China Journal of Oral and Maxillofacial Surgery ›› 2024, Vol. 22 ›› Issue (3): 294-299.doi: 10.19438/j.cjoms.2024.03.015
• Review Article • Previous Articles Next Articles
SUN Xiao-mei1, DUAN Xiao-feng1,2
Received:
2023-09-03
Revised:
2023-10-01
Online:
2024-05-20
Published:
2024-06-11
CLC Number:
SUN Xiao-mei, DUAN Xiao-feng. Research progress of deubiquitinase in oral squamous cell carcinoma[J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(3): 294-299.
[1] Cao M, Shi E, Wang H, et al.Personalized targeted therapeutic strategies against oral squamous cell carcinoma. an evidence-based review of literature[J]. Int J Nanomedicine, 2022, 17: 4293-4306. [2] Johnson DE, Burtness B, Leemans CR, et al.Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92-140. [3] Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [4] Gupta S, Gupta R, Sinha DN, et al.Relationship between type of smokeless tobacco & risk of cancer: a systematic review[J]. Indian J Med Res, 2018, 148(1): 56-76. [5] Bagnardi V, Rota M, Botteri E, et al.Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis[J]. Br J Cancer, 2015, 112(3): 580-593. [6] Miranda-filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth[J]. Oral Oncol, 2020, 102: 104551. [7] Li H, Zhang Y, Xu M, et al.Current trends of targeted therapy for oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2022, 148(9): 2169-2186. [8] Canning M, Guo G, Yu M, et al.Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy[J]. Front Cell Dev Biol, 2019, 7: 52-80. [9] Js H, Hysi D.Methods and risk of bias in molecular marker prognosis studies in oral squamous cell carcinoma[J]. Oral Dis, 2018, 24(1-2): 115-119. [10] Antao AM, Tyagi A, Kim KS, et al.Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics[J]. Cancers (Basel), 2020, 12(6): 1579-1602. [11] Cruz Walma DA, Chen Z, Bullock AN, et al.Ubiquitin ligases: guardians of mammalian development[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 350-367. [12] Sewduth RN, Baietti MF, Sablina AA.Cracking the monoubiquitin code of genetic diseases[J]. Int J Mol Sci, 2020, 21(9): 3036. [13] Baur R, Rape M.Getting close: insight into the structure and function of K11/K48-branched ubiquitin chains[J]. Structure, 2020, 28(1): 1-3. [14] Clague MJ, Urbé S, Komander D.Breaking the chains: deubiquitylating enzyme specificity begets function[J]. Nat Rev Mol Cell Biol, 2019, 20(6): 338-352. [15] Trulsson F, Akimov V, Robu M, et al.Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates[J]. Nat Commun, 2022, 13(1): 2736. [16] Poondla N, Chandrasekaran AP, Kim KS, et al.Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities?[J]. BMB Rep, 2019, 52(3): 181-189. [17] Das T, Shin SC, Song EJ, et al.Regulation of deubiquitinating enzymes by post-translational modifications[J]. Int J Mol Sci, 2020, 21(11): 4028. [18] Park J, Cho J, Song EJ.Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1461. [19] Jin S, Kudo Y, Horiguchi T.The role of deubiquitinating enzyme in head and neck squamous cell carcinoma[J]. Int J Mol Sci, 2022, 24(1): 552. [20] Hassin O, Oren M.Drugging p53 in cancer: one protein, many targets[J]. Nat Rev Drug Discov, 2023, 22(2): 127-144. [21] Levine AJ. p53: 800 million years of evolution and 40 years of discovery[J]. Nat Rev Cancer, 2020, 20(8): 471-480. [22] Zhu H, Gao H, Ji Y, et al.Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials[J]. J Hematol Oncol, 2022, 15(1): 91-114. [23] Xie L, Jia L, Qu J, et al.Expression and prognostic significance of the P53-related DNA damage repair proteins checkpoint kinase 1 (CHK1) and growth arrest and DNA-damage-inducible 45 alpha (GADD45A) in human oral squamous cell carcinoma[J]. Eur J Oral Sci, 2020, 128(2): 128-135. [24] Hong A, Zhang X, Jones D, et al.Relationships between p53 mutation, HPV status and outcome in oropharyngeal squamous cell carcinoma[J]. Radiother Oncol, 2016, 118(2): 342-349. [25] Fernández-majada V, Welz PS, Ermolaeva MA, et al. The tumour suppressor CYLD regulates the p53 DNA damage response[J]. Nat Commun, 2016, 7: 12508. [26] Müller I, Strozyk E, Schindler S, et al. Cancer cells employ nuclear caspase-8 to overcome the p53-dependent G2/M checkpoint through cleavage of USP28[J]. Mol Cell, 2020, 77(5): 970-984.e7. [27] Prieto-garcia C, Tomaškovic I, Shah VJ, et al. USP28: oncogene or tumor suppressor? a unifying paradigm for squamous cell carcinoma[J]. Cells, 2021, 10(10): 2652. [28] Khoronenkova SV, Dianova II, Ternette N, et al.ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage[J]. Mol Cell, 2012, 45(6): 801-813. [29] Hu M, Gu L, Li M, et al.Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway[J]. PLoS Biol, 2006, 4(2): e27. [30] Zhang MJ, Chen DS, Li H, et al.Clinical significance of USP7 and EZH2 in predicting prognosis of laryngeal squamous cell carcinoma and their possible functional mechanism[J]. Int J Clin Exp Pathol, 2019, 12(6): 2184-2194. [31] Macdonald BT, Tamai K, He X.Wnt/beta-catenin signaling: components, mechanisms, and diseases[J]. Dev Cell, 2009, 17(1): 9-26. [32] Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis[J]. Development, 2018, 145(11): dev146589. [33] Kyun ML, Kim SO, Lee HG, et al. Wnt3a stimulation promotes primary ciliogenesis through β-catenin phosphorylation-induced reorganization of centriolar satellites[J]. Cell Rep, 2020, 30(5): 1447-1462.e5. [34] Wang D, Zhang Q, Li F, et al.β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation[J]. Cancer Cell Int, 2019, 19: 298-306. [35] Xie J, Huang L, Lu Y G, et al.Roles of the Wnt signaling pathway in head and neck squamous cell carcinoma[J]. Front Mol Biosci, 2020, 7: 590912. [36] Huang Y, Hu K, Zhang S, et al.S6K1 phosphorylation-dependent degradation of Mxi1 by β-Trcp ubiquitin ligase promotes Myc activation and radioresistance in lung cancer[J]. Theranostics, 2018, 8(5): 1286-1300. [37] Kim J, Alavi Naini F, Sun Y, et al.Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin[J]. Am J Cancer Res, 2018, 8(9): 1823-1836. [38] Shi J, Liu Y, Xu X, et al.Deubiquitinase USP47/UBP64E regulates β-catenin ubiquitination and degradation and plays a positive role in Wnt signaling[J]. Mol Cell Biol, 2015, 35(19): 3301-3311. [39] Shang Z, Zhao J, Zhang Q, et al.USP9X-mediated deubiquitination of B-cell CLL/lymphoma 9 potentiates Wnt signaling and promotes breast carcinogenesis[J]. J Biol Chem, 2019, 294(25): 9844-9857. [40] Wu C, Luo K, Zhao F, et al.USP20 positively regulates tumorigenesis and chemoresistance through β-catenin stabilization[J]. Cell Death Differ, 2018, 25(10): 1855-1869. [41] da Silva SD, Cunha IW, Nishimoto IN, et al. Clinicopathological significance of ubiquitin-specific protease 2a (USP2a), fatty acid synthase (FASN), and ErbB2 expression in oral squamous cell carcinomas[J]. Oral Oncol, 2009, 45(10): e134-e139. [42] Lu R, Wu G, Chen M, et al.USP18 and USP20 restrict oHSV-1 replication in resistant human oral squamous carcinoma cell line SCC9 and affect the viability of SCC9 cells[J]. Mol Ther Oncolytics, 2021, 23: 477-487. [43] Nanayakkara DM, Nguyen MN, Wood SA.Deubiquitylating enzyme, USP9X, regulates proliferation of cells of head and neck cancer lines[J]. Cell Prolif, 2016, 49(4): 494-502. [44] Jung H, Kim BG, Han WH, et al.Deubiquitination of dishevelled by Usp14 is required for Wnt signaling[J]. Oncogenesis, 2013, 2(8): e64. [45] Chen X, Wu J, Chen Y, et al.Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma[J]. Int J Biochem Cell Biol, 2016, 79: 350-359. [46] Tang JY, Xu YH, Lin LC, et al.LY303511 displays antiproliferation potential against oral cancer cells [47] Oeckinghaus A, Ghosh S.The NF-kappaB family of transcription factors and its regulation[J]. Cold Spring Harb Perspect Biol, 2009, 1(4): a000034. [48] Eluard B, Nuan-aliman S, Faumont N, et al. The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma[J]. Blood, 2022, 139(3): 384-398. [49] 王爽, 邱林, 刘涵, 等. NF-κB通路对口腔鳞癌细胞迁移和侵袭影响的初步研究[J]. 实用口腔医学杂志, 2022, 38(5): 672-676. Wang S, Qiu L, Liu H, et al.Effect of NF-κB pathway on migration and invasion of oral squamous cell[J]. Journal of Practical Stomatology, 2022, 38(5): 672-676. [50] 邵小钧, 朱乔, 刘有, 等. 咀嚼槟榔与口腔鳞癌的相关临床病理学因素分析[J]. 上海口腔医学, 2021, 30(3): 268-272. Shao XJ, Zhu Q, Liu Y, et al.Analysis of clinicopathological factors related to chewing areca nut and oral squamous cell carcinoma[J]. Shanghai Journal of Stomatology, 2021, 30(3): 268-272. [51] Micheau O, Tschopp J.Induction of TNF receptor I-mediated apoptosis [52] Hou X, Wang L, Zhang L, et al.Ubiquitin-specific protease 4 promotes TNF-α-induced apoptosis by deubiquitination of RIP1 in head and neck squamous cell carcinoma[J]. FEBS Lett, 2013, 587(4): 311-316. [53] Morgan EL, Chen Z, Van Waes C.Regulation of NFκB signalling by ubiquitination: a potential therapeutic target in head and neck squamous cell carcinoma?[J]. Cancers(Basel), 2020, 12(10): 2877. [54] Ge WL, Xu JF, Hu J.Regulation of oral squamous cell carcinoma proliferation through crosstalk between SMAD7 and CYLD[J]. Cell Physiol Biochem, 2016, 38(3): 1209-1217. [55] Liu S, De Boeck M, van Dam H, et al. Regulation of the TGF-β pathway by deubiquitinases in cancer[J]. Int J Biochem Cell Biol, 2016, 76: 135-145. [56] Zhang Y, Beachy PA.Cellular and molecular mechanisms of Hedgehog signalling[J]. Nat Rev Mol Cell Biol, 2023, 24(9): 668-687. [57] Hebrok M, Kim SK, St jacques B, et al. Regulation of pancreas development by hedgehog signaling[J]. Development, 2000, 127(22): 4905-4913. [58] Chuang PT, Mcmahon AP.Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein[J]. Nature, 1999, 397(6720): 617-621. [59] Paluszczak J, Wisniewska D, Kostrzewska-poczekaj M, et al. Prognostic significance of the methylation of Wnt pathway antagonists-CXXC4, DACT2, and the inhibitors of sonic hedgehog signaling-ZIC1, ZIC4, and HHIP in head and neck squamous cell carcinomas[J]. Clin Oral Investig, 2017, 21(5): 1777-1788. [60] Takabatake K, Shimo T, Murakami J, et al.The role of sonic Hedgehog signaling in the tumor microenvironment of oral squamous cell carcinoma[J]. Int J Mol Sci, 2019, 20(22):5779. [61] Yue S, Chen Y, Cheng SY.Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway[J]. Oncogene, 2009, 28(4): 492-499. [62] 周紫章. Usp7/HAUSP通过去泛素化Ci/Gli调控Hh信号通路[D]. 南京: 南京大学, 2015. Zhou ZZ.Usp7/HAUSP regulates Hh signaling pathway by deubiquitinating Ci/Gli[D]. Nangjing: Nanjing University, 2015. [63] Xia R, Jia H, Fan J, et al.USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization[J]. PLoS Biol, 2012, 10(1): e1001238. [64] Zhou Z, Yao X, Pang S, et al.The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened[J]. J Mol Cell Biol, 2018, 10(3): 243-257. [65] Forastiere AA, Goepfert H, Maor M, et al.Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer[J]. N Engl J Med, 2003, 349(22): 2091-2098. [66] Pignon J P, Bourhis J, Domenge C, et al.Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-analysis of chemotherapy on head and neck cancer[J]. Lancet, 2000, 355(9208): 949-955. [67] Cengiz Seval G, Beksac M.The safety of bortezomib for the treatment of multiple myeloma[J]. Expert Opin Drug Saf, 2018, 17(9): 953-962. [68] Suenaga N, Kuramitsu M, Komure K, et al.Loss of tumor suppressor CYLD expression triggers cisplatin resistance in oral squamous cell carcinoma[J]. Int J Mol Sci, 2019, 20(20): 5194. [69] Tian Z, D'arcy P, Wang X, et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance[J]. Blood, 2014, 123(5): 706-716. [70] Lee HR, Choi WC, Lee S, et al.Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein[J]. Nat Struct Mol Biol, 2011, 18(12): 1336-1344. [71] Patni AP, Harishankar MK, Joseph JP, et al.Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma-clinical implications[J]. Cell Oncol (Dordr), 2021, 44(3): 473-494. [72] Sun T, Liu Z, Yang Q.The role of ubiquitination and deubiquitination in cancer metabolism[J]. Mol Cancer, 2020, 19(1): 146-164. [73] Tsuchida S, Nakayama T.Ubiquitination and deubiquitination in oral disease[J]. Int J Mol Sci, 2021, 22(11): 5488. |
[1] | CHEN Hua, LI Jing, LUO Mei. Effect of salidroside on the growth of oral squamous cell carcinoma cells through regulating NRF2/KEAP1 pathway [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(5): 424-429. |
[2] | HUANG Can, LUO Tao, SUN Yu. The predictive value of modified frailty assessment tool for postoperative complications in elderly patients undergoing flap reconstruction with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 373-377. |
[3] | LI Jin-cun, ZHAI Kun, HU Chen, LIU Xu-ying, MA Xing-ping, MA Jian. Integration of WGNCA and PPI networks to identify key genes for oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(2): 128-136. |
[4] | ZHOU Xin-xia, LIU Jing-hao, GAN Gui-fang, CHEN Fu-xiang. The expression and biological functions of sphingosine-1-phosphate receptor 4 in oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 10-15. |
[5] | LI Hua-sheng, ZHOU Di, HAN Nan-nan, YAN Ming, RUAN Min. Lycorine suppressed oral squamous cell carcinoma cell proliferation and invasion via scap protein degradation: an experimental study [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 29-35. |
[6] | HAN Lin-zi, ZHOU Jian-hua, DONG lei, ZHAO Lu, YUAN Rong-tao. Research progress on the effect of cancer-associated fibroblasts on biological behavior of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 84-91. |
[7] | LIU Heng, LI Yong-di, YIN Xin-hai, DUAN Xiao-feng. Expression of ferritin heavy chain 1 in head and neck squamous cell carcinoma and its effect on proliferation, migration and invasion of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 529-537. |
[8] | ZHAO Tong-chao, LIANG Si-yuan, ZHOU Zhi-hang, ZHU Fang-xing, JU Wu-tong, TAN Yi-ran, LIU Ying, ZHONG Lai-ping. Correlation between BMI and prognosis and induction chemotherapy in patients with locally advanced oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 559-565. |
[9] | ZHU Fang-xing, ZHOU Zhi-hang, JU Wu-tong, TAN Yi-ran, LIU Ying, ZHONG Lai-ping, ZHAO Tong-chao. Baseline derived neutrophil to lymphocyte ratio predicting the prognosis of local advanced oral squamous cell carcinoma: a retrospective study over 10 years [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 566-571. |
[10] | JIN Neng-hao, TIAN Yu, ZHU Liang, QIAO Bo, LI Liang-bo, ZHANG Hai-zhong, ZHANG Lei. Clinical significance of PD-L1 and tumor immune microenvironment in predicting neoadjuvant therapy for oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 572-578. |
[11] | LI Gui-zhong, LI Jie-ying, ZHOU Kai, MENG Yu-xiang, WANG Ke-xin, GE Sheng-you, SONG Kai, FENG Yuan-yong, TAO Yue-qin, ZHAN Xiao-hong, SHANG Wei. Effect of extranodal extension on TNM staging and survival in patients with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 377-383. |
[12] | SI Cheng-yun, LIU Meng-qiu, WENG Hai-yan, ZHANG Li-yu, AN Xing-fei, ZHOU Yu. Accuracy of MRI to measure and evaluate clinical staging of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 390-396. |
[13] | SUI Xin, DU Zhong. Research progress of β-catenin in tooth development [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 413-417. |
[14] | WU Zhu-hao, ZHANG Xing-wei, SUN Ya-wei, LI Zi-hui, CHEN Xin, PU Yu-mei, HU Qin-gang, DONG Ying-chun, SUN Guo-wen. Application of ICG fluorescence navigation during salvage surgery for advanced oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(3): 248-252. |
[15] | REZIWANGULI·Yasen, MAIREPATI·Maiming, LI Chen-xi, GONG Zhong-cheng. Research progress in the role and mechanism of Porphyromonas gingivalis in promoting oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(2): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||