China Journal of Oral and Maxillofacial Surgery ›› 2024, Vol. 22 ›› Issue (1): 84-91.doi: 10.19438/j.cjoms.2024.01.015
• Review Articles • Previous Articles Next Articles
HAN Lin-zi1,2, ZHOU Jian-hua1, DONG lei1,2, ZHAO Lu3, YUAN Rong-tao1
Received:
2023-02-15
Revised:
2023-04-05
Online:
2024-01-20
Published:
2024-02-05
CLC Number:
HAN Lin-zi, ZHOU Jian-hua, DONG lei, ZHAO Lu, YUAN Rong-tao. Research progress on the effect of cancer-associated fibroblasts on biological behavior of oral squamous cell carcinoma[J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 84-91.
[1] Bagan J, Sarrion G, Jimenez Y.Oral cancer: clinical features[J]. Oral Oncol, 2010, 46(6): 414-417. [2] Liu C, Wang M, Zhang H, et al.Tumor microenvironment and immunotherapy of oral cancer[J]. Eur J Med Res, 2022, 27(1): 198. [3] Warnakulasuriya S, Kerr A.Oral cancer screening: past, present, and future[J]. J Dent Res, 2021, 100(12): 1313-1320. [4] Junttila M, De Sauvage F.Influence of tumour micro-environment heterogeneity on therapeutic response[J]. Nature, 2013, 501(7467): 346-354. [5] Sahai E, Astsaturov I, Cukierman E, et al.A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186. [6] Mishra P, Mishra P, Humeniuk R, et al.Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells[J]. Cancer Res, 2008, 68(11): 4331-4339. [7] Ansems M, Span P.The tumor microenvironment and radiotherapy response: a central role for cancer-associated fibroblasts[J]. Clin Transl Radiat Oncol, 2020, 22: 90-97. [8] Zhang D, Song Y, Li D, et al.Cancer-associated fibroblasts promote tumor progression by lncRNA-mediated RUNX2/GDF10 signaling in oral squamous cell carcinoma[J]. Mol Oncol, 2022, 16(3): 780-794. [9] Chen X, Song E.Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115. [10] Kabashima-Niibe A, Higuchi H, Takaishi H, et al.Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells[J]. Cancer Sci, 2013, 104(2): 157-164. [11] Friedman G, Levi-Galibov O, David E, et al.Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4 and PDPN CAFs to clinical outcome[J]. Nat Cancer, 2020, 1(7): 692-708. [12] Quante M, Tu S, Tomita H, et al.Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, 2011, 19(2): 257-272. [13] Barcellos-De-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1[J]. Stem Cells, 2016, 34(10): 2536-2547. [14] Iwano M, Plieth D, Danoff T, et al.Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. J Clin Invest, 2002, 110(3): 341-350. [15] Wawro M, Chojnacka K, Wieczorek-Szukała K, et al.Invasive colon cancer cells induce transdifferentiation of endothelium to cancer-associated fibroblasts through microtubules enriched in tubulin-β3[J]. Int J Mol Sci, 2018, 20(1): 53-70. [16] Peng Y, Li Z, Yang P, et al.Direct contacts with colon cancer cells regulate the differentiation of bone marrow mesenchymal stem cells into tumor associated fibroblasts[J]. Biochem Biophys Res Commun, 2014, 451(1): 68-73. [17] Bielczyk-Maczynska E.White adipocyte plasticity in physiology and disease[J]. Cells, 2019, 8(12): 1507-1520. [18] Ning X, Zhang H, Wang C, et al.Exosomes released by gastric cancer cells induce transition of pericytes into cancer-associated fibroblasts[J]. Med Sci Monit, 2018, 24: 2350-2359. [19] Huang X, He C, Hua X, et al.Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma[J]. Clin Transl Med, 2020, 10(2): e41. [20] Jotzu C, Alt E, Welte G, et al.Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors[J]. Cell Oncol (Dordr), 2011, 34(1): 55-67. [21] Hosaka K, Yang Y, Seki T, et al.Pericyte-fibroblast transition promotes tumor growth and metastasis[J]. Proc Natl Acad Sci USA, 2016, 113(38): E5618-E5627. [22] Cully M.Tumour microenvironment: fibroblast subtype provides niche for cancer stem cells[J]. Nat Rev Cancer, 2018, 18(3): 136. [23] Nurmik M, Ullmann P, Rodriguez F, et al.In search of definitions: cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4): 895-905. [24] Lebleu V, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact[J]. Dis Model Mech, 2018, 11(4): ddm029447. [25] Puré E, Blomberg R.Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics[J]. Oncogene, 2018, 37(32): 4343-4357. [26] Mezawa Y, Orimo A.The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas[J]. Cell Tissue Res, 2016, 365(3): 675-689. [27] Liu T, Han C, Wang S, et al.Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1): 86-100. [28] Long K, Tooker G, Tooker E, et al.IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma[J]. Mol Cancer Ther, 2017, 16(9): 1898-1908. [29] Erdogan B, Webb D.Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis[J]. Biochem Soc Trans, 2017, 45(1): 229-236. [30] De Jaeghere E, Denys H, De Wever O.Fibroblasts fuel immune escape in the tumor microenvironment[J]. Trends Cancer, 2019, 5(11): 704-723. [31] Yang F, Ning Z, Ma L, et al.Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts[J]. Mol Cancer, 2017, 16(1): 148-157. [32] Wang Z, Zhang H, Zhai Y, et al.Single-cell profiling reveals heterogeneity of primary and lymph node metastatic tumors and immune cell populations and discovers important prognostic significance of CCDC43 in oral squamous cell carcinoma[J]. Front Immunol, 2022, 13: 843322. [33] Patel A, Vipparthi K, Thatikonda V, et al.A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma[J]. Oncogenesis, 2018, 7(10): 78-92. [34] Costea D, Hills A, Osman A, et al.Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma[J]. Cancer Res, 2013, 73(13): 3888-3901. [35] Yu C, Liu Y, Huang D, et al.TGF-β1 mediates epithelial to mesenchymal transition [36] Xing F, Saidou J, Watabe K.Cancer associated fibroblasts (CAFs) in tumor microenvironment[J]. Front Biosci (Landmark Ed), 2010, 15(1): 166-179. [37] Wang Y, Jing Y, Ding L, et al.Epiregulin reprograms cancer-associated fibroblasts and facilitates oral squamous cell carcinoma invasion [38] Wu F, Yang J, Liu J, et al.Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 218-252. [39] Fotsitzoudis C, Koulouridi A, Messaritakis I, et al.Cancer-associated fibroblasts: the origin, biological characteristics and role in cancer-a glance on colorectal cancer[J]. Cancers(Basel), 2022, 14(18): 4394-4420. [40] Jiang X, Huang Z, Sun X, et al.CCL18-NIR1 promotes oral cancer cell growth and metastasis by activating the JAK2/STAT3 signaling pathway[J]. BMC Cancer, 2020, 20(1): 632-645. [41] Wheeler S, Shi H, Lin F, et al.Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models[J]. Head Neck, 2014, 36(3): 385-392. [42] Bienkowska K, Hanley C, Thomas G.Cancer-associated fibroblasts in oral cancer: a current perspective on function and potential for therapeutic targeting[J]. Front Oral Health, 2021, 2: 686337. [43] Kalluri R.The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. [44] Biffi G, Oni T, Spielman B, et al.IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9(2): 282-301. [45] Torphy R, Wang Z, True-Yasaki A, et al. Stromal content is correlated with tissue site, contrast retention,survival in pancreatic adenocarcinoma[J]. JCO Precis Oncol, 2018, 2018: PO.17.00121. [46] Özdemir B, Pentcheva-Hoang T, Carstens J, et al.Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2015, 28(6): 831-833. [47] Van Cutsem E, Tempero M, Sigal D, et al.Randomized phase Ⅲ trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194. [48] De Palma M, Biziato D, Petrova T.Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457-474. [49] Mrgritescu C, Pirici D, Sting A, et al.VEGF expression and angiogenesis in oral squamous cell carcinoma: an immunohistochemical and morphometric study[J]. Clin Exp Med, 2010, 10(4): 209-214. [50] Mirkeshavarz M, Ganjibakhsh M, Aminishakib P, et al.Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(10): 131-136. [51] Nagasaki T, Hara M, Nakanishi H, et al.Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction[J]. Br J Cancer, 2014, 110(2): 469-478. [52] Kayamori K, Katsube K, Sakamoto K, et al.NOTCH3 Is induced in cancer-associated fibroblasts and promotes angiogenesis in oral squamous cell carcinoma[J]. PLoS One, 2016, 11(4): e0154112. [53] Heichler C, Scheibe K, Schmied A, et al.STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7): 1269-1282. [54] Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al.Role of matrix metalloproteinases in angiogenesis and cancer[J]. Front Oncol, 2019, 9: 1370. [55] Kalluri R, Zeisberg M.Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5): 392-401. [56] Oskarsson T, Massagué J.Extracellular matrix players in metastatic niches[J]. EMBO J, 2012, 31(2): 254-256. [57] Tomasek J, Gabbiani G, Hinz B, et al.Myofibroblasts and mechano-regulation of connective tissue remodelling[J]. Nat Rev Mol Cell Biol, 2002, 3(5): 349-363. [58] Kato K, Miyazawa H, Kawashiri S, et al.Tumour: fibroblast interactions promote invadopodia-mediated migration and invasion in oral squamous cell carcinoma[J]. J Oncol, 2022: 5277440. [59] Lee S, Hong J, Kim J, et al.Cancer-associated fibroblasts activated by miR-196a promote the migration and invasion of lung cancer cells[J]. Cancer Lett, 2021, 508: 92-103. [60] Hu D, Li Z, Zheng B, et al.Cancer-associated fibroblasts in breast cancer: challenges and opportunities[J]. Cancer Commun (Lond), 2022, 42(5): 401-434. [61] Grunberg N, Pevsner-Fischer M, Goshen-Lago T, et al.Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes [62] Pelon F, Bourachot B, Kieffer Y, et al.Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms[J]. Nat Commun, 2020, 11(1): 404-423. [63] Yu Y, Xiao C, Tan L, et al.Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling[J]. Br J Cancer, 2014, 110(3): 724-732. [64] Haga K, Yamazaki M, Maruyama S, et al.Crosstalk between oral squamous cell carcinoma cells and cancer-associated fibroblasts [65] Fullár A, Kovalszky I, Bitsche M, et al.Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma[J]. Exp Cell Res, 2012, 318(13): 1517-1527. [66] Elmusrati A, Pilborough A, Khurram S, et al.Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma[J]. Br J Cancer, 2017, 117(6): 867-875. [67] Yazdani S, Bansal R, Prakash J.Drug targeting to myofibroblasts: implications for fibrosis and cancer[J]. Adv Drug Del Rev, 2017, 121: 101-116. [68] Sun L, Xu K, Cui J, et al.Cancer-associated fibroblast derived exosomal miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4): 1319-1328. [69] Bagordakis E, Sawazaki-Calone I, Macedo C, et al.Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures[J]. Tumour Biol, 2016, 37(7): 9045-9057. [70] Mantovani A, Marchesi F, Malesci A, et al.Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. [71] Arango Duque G, Descoteaux A.Macrophage cytokines: involvement in immunity and infectious diseases[J]. Front Immunol, 2014, 5: 491-502. [72] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al.Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. [73] Herrera M, Herrera A, Domínguez G, et al.Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients[J]. Cancer Sci, 2013, 104(4): 437-444. [74] Takahashi H, Sakakura K, Kudo T, et al.Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages[J]. Oncotarget, 2017, 8(5): 8633-8647. [75] Ueshima E, Fujimori M, Kodama H, et al.Macrophage-secreted TGF-β contributes to fibroblast activation and ureteral stricture after ablation injury[J]. Am J Physiol Renal Physiol, 2019, 317(7): F52-F64. [76] Melaiu O, Lucarini V, Cifaldi L, et al.Influence of the tumor microenvironment on NK cell function in solid tumors[J]. Front Immunol, 2019, 10: 3038. [77] Ziani L, Safta-Saadoun T, Gourbeix J, et al.Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion[J]. Oncotarget, 2017, 8(12): 19780-19794. [78] Huang Y, Chang C, Kuo Y, et al.Cancer-associated fibroblast-derived interleukin-1β activates protumor C-C motif chemokine ligand 22 signaling in head and neck cancer[J]. Cancer Sci, 2019, 110(9): 2783-2793. [79] Elyada E, Bolisetty M, Laise P, et al.Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. [80] Dou D, Ren X, Han M, et al.Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer [81] Papadopoulou A, Kletsas D.Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells [82] Hellevik T, Pettersen I, Berg V, et al. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced[J]. Radiat Oncol, 2012(1), 7: 59-73. [83] Kamochi N, Nakashima M, Aoki S, et al.Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction[J]. Cancer Sci, 2008, 99(12): 2417-2427. [84] Büttner C, Skupin A, Reimann T, et al.Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4[J]. Am J Respir Cell Mol Biol, 1997, 17(3): 315-325. [85] Valkenburg K, De Groot A, Pienta K.Targeting the tumour stroma to improve cancer therapy[J]. Nat Rev Clin Oncol, 2018, 15(6): 366-381. [86] Peiris-Pagès M, Sotgia F, Lisanti M.Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells[J]. Oncotarget, 2015, 6(13): 10728-10745. [87] Lotti F, Jarrar A, Pai R, et al.Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A[J]. J Exp Med, 2013, 210(13): 2851-2872. [88] Schmitz S, Bindea G, Albu R, et al.Cetuximab promotes epithelial to mesenchymal transition and cancer associated fibroblasts in patients with head and neck cancer[J]. Oncotarget, 2015, 6(33): 34288-34299. [89] Jamieson E, Lippard S.Structure, recognition, and processing of cisplatin-DNA adducts[J]. Chem Rev, 1999, 99(9): 2467-2498. [90] Qin X, Guo H, Wang X, et al.Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5[J]. Genome Biol, 2019, 20(1): 12-33. [91] Zhang D, Ding L, Li Y, et al.Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance [92] Jones D.Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases[J]. Br J Pharmacol, 2014, 171(12): 2925-2939. [93] Liu L, Ning S, Fu S, et al.Effects of lncRNA ANRIL on proliferation and apoptosis of oral squamous cell carcinoma cells by regulating TGF-β/Smad pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(14): 6194-6201. [94] Jagadeeshan S, Prasad M, Ortiz-Cuaran S, et al.Adaptive responses to monotherapy in head and neck cancer: interventions for rationale-based therapeutic combinations[J]. Trends Cancer, 2019, 5(6): 365-390. [95] Ayuso J, Vitek R, Swick A, et al.Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells[J]. Sci Rep, 2019, 9(1): 12480. [96] Yegodayev K, Novoplansky O, Golden A, et al.TGF-beta-activated cancer-associated fibroblasts limit cetuximab efficacy in preclinical models of head and neck cancer[J]. Cancers, 2020, 12(2): 339-356. [97] Monteran L, Erez N.The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J]. Front Immunol, 2019, 10: 1835. [98] Sun C, Mezzadra R, Schumacher T.Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. [99] Hosein A, Huang H, Wang Z, et al.Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution[J]. JCI Insight, 2019, 5(16): e129212. [100] Takahashi H, Sakakura K, Kawabata-Iwakawa R, et al.Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma[J]. Cancer Immunol Immunother, 2015, 64(11): 1407-1417. [101] Chakravarthy A, Khan L, Bensler N, et al.TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure[J]. Nat Commun, 2018, 9(1): 4692. [102] Mariathasan S, Turley S, Nickles D, et al.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. [103] Öhlund D, Elyada E, Tuveson D.Fibroblast heterogeneity in the cancer wound[J]. J Exp Med, 2014, 211(8): 1503-1523. |
[1] | CHEN Hua, LI Jing, LUO Mei. Effect of salidroside on the growth of oral squamous cell carcinoma cells through regulating NRF2/KEAP1 pathway [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(5): 424-429. |
[2] | HUANG Can, LUO Tao, SUN Yu. The predictive value of modified frailty assessment tool for postoperative complications in elderly patients undergoing flap reconstruction with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 373-377. |
[3] | SUN Xiao-mei, DUAN Xiao-feng. Research progress of deubiquitinase in oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(3): 294-299. |
[4] | LI Jin-cun, ZHAI Kun, HU Chen, LIU Xu-ying, MA Xing-ping, MA Jian. Integration of WGNCA and PPI networks to identify key genes for oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(2): 128-136. |
[5] | ZHOU Xin-xia, LIU Jing-hao, GAN Gui-fang, CHEN Fu-xiang. The expression and biological functions of sphingosine-1-phosphate receptor 4 in oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 10-15. |
[6] | LI Hua-sheng, ZHOU Di, HAN Nan-nan, YAN Ming, RUAN Min. Lycorine suppressed oral squamous cell carcinoma cell proliferation and invasion via scap protein degradation: an experimental study [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 29-35. |
[7] | LIU Heng, LI Yong-di, YIN Xin-hai, DUAN Xiao-feng. Expression of ferritin heavy chain 1 in head and neck squamous cell carcinoma and its effect on proliferation, migration and invasion of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 529-537. |
[8] | ZHAO Tong-chao, LIANG Si-yuan, ZHOU Zhi-hang, ZHU Fang-xing, JU Wu-tong, TAN Yi-ran, LIU Ying, ZHONG Lai-ping. Correlation between BMI and prognosis and induction chemotherapy in patients with locally advanced oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 559-565. |
[9] | ZHU Fang-xing, ZHOU Zhi-hang, JU Wu-tong, TAN Yi-ran, LIU Ying, ZHONG Lai-ping, ZHAO Tong-chao. Baseline derived neutrophil to lymphocyte ratio predicting the prognosis of local advanced oral squamous cell carcinoma: a retrospective study over 10 years [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 566-571. |
[10] | JIN Neng-hao, TIAN Yu, ZHU Liang, QIAO Bo, LI Liang-bo, ZHANG Hai-zhong, ZHANG Lei. Clinical significance of PD-L1 and tumor immune microenvironment in predicting neoadjuvant therapy for oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 572-578. |
[11] | LI Gui-zhong, LI Jie-ying, ZHOU Kai, MENG Yu-xiang, WANG Ke-xin, GE Sheng-you, SONG Kai, FENG Yuan-yong, TAO Yue-qin, ZHAN Xiao-hong, SHANG Wei. Effect of extranodal extension on TNM staging and survival in patients with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 377-383. |
[12] | SI Cheng-yun, LIU Meng-qiu, WENG Hai-yan, ZHANG Li-yu, AN Xing-fei, ZHOU Yu. Accuracy of MRI to measure and evaluate clinical staging of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 390-396. |
[13] | WU Zhu-hao, ZHANG Xing-wei, SUN Ya-wei, LI Zi-hui, CHEN Xin, PU Yu-mei, HU Qin-gang, DONG Ying-chun, SUN Guo-wen. Application of ICG fluorescence navigation during salvage surgery for advanced oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(3): 248-252. |
[14] | HAN Lin-zi, ZHOU Jian-hua, ZHAO Qian, DONG Lei, CHEN Zheng-gang, QIU Jian-zhong, YUAN Rong-tao. The regulation and mechanism of cancer-associated fibroblasts on tumor-infiltrating immune cells in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(2): 119-124. |
[15] | REZIWANGULI·Yasen, MAIREPATI·Maiming, LI Chen-xi, GONG Zhong-cheng. Research progress in the role and mechanism of Porphyromonas gingivalis in promoting oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(2): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||