[1] Johnson DE, Burtness B, Leemans CR, et al.Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92-140. [2] Chow LQM.Head and neck cancer[J]. N Engl J Med, 2020, 382(1): 60-72. [3] Siegel RL, Miller KD, Jemal A.Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. [4] Caudell JJ, Gillison ML, Maghami E, et al.NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022[J]. J Natl Compr Canc Netw, 2022,20(3):224-234. [5] Ettinger KS, Ganry L, Fernandes RP.Oral cavity cancer[J]. Oral Maxillofac Surg Clin North Am, 2019, 31(1): 13-29. [6] Burtness B, Harrington KJ, Greil R, et al.Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck(KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 394(10212): 1915-1928. [7] Ferris RL, Blumenschein G, Fayette J, et al.Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016, 375(19): 1856-1867. [8] Cohen EEW, Soulières D, Le Tourneau C, et al.Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 393(10167): 156-167. [9] Schoenfeld JD, Hanna GJ, Jo VY, et al.Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial[J]. JAMA Oncol, 2020, 6(10): 1563-1570. [10] Zou W, Wolchok JD, Chen L. PD-L1(B7-H1) andPD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers,combinations [J]. Sci Transl Med, 2016, 8(328): 328rv4. [11] Zheng ZG, Zhu ST, Cheng HM, et al.Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway[J]. Autophagy, 2021, 17(7): 1592-1613. [12] Roy M, Liang L, Xiao X, et al.Lycorine: a prospective natural lead for anticancer drug discovery[J]. Biomed Pharmacother, 2018, 107: 615-624. [13] Cedrón JC, Gutiérrez D, Flores N, et al.Synthesis and antiplasmodial activity of lycorine derivatives[J]. Bioorg Med Chem, 2010, 18(13): 4694-4701. [14] Locárek M, Nováková J, Kloucek P, et al.Antifungal and antibacterial activity of extracts and alkaloids of selected amaryllidaceae species[J]. Nat Prod Commun, 2015, 10(9): 1537-1540. [15] Lamoral-theys D, Andolfi A, Van Goietsenoven G, et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight[J]. J Med Chem, 2009, 52(20): 6244-6256. [16] Roy M, Liang L, Xiao X, et al.Lycorine downregulates HMGB1 to inhibit autophagy and enhances bortezomib activity in multiple myeloma[J]. Theranostics, 2016, 6(12): 2209-2224. [17] Kang J, Zhang Y, Cao X, et al.Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge[J]. Int Immunopharmacol, 2012, 12(1): 249-256. [18] Horton JD, Goldstein JL, Brown MS.SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Invest, 2002, 109(9): 1125-1131. [19] Van Meer G, Voelker DR, Feigenson GW.Membrane lipids: where they are and how they behave[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 112-124. [20] Brown MS, Goldstein JL.The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J]. Cell, 1997, 89(3): 331-340. [21] Horton JD, Shah NA, Warrington JA, et al.Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci U S A, 2003, 100(21): 12027-12032. [22] Radhakrishnan A, Goldstein JL, Mcdonald JG, et al.Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance[J]. Cell Metab, 2008, 8(6): 512-521. [23] Brown MS, Goldstein JL.A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 232(4746): 34-47. [24] Ikonen E.Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 125-138. [25] Tasdogan A, Faubert B, Ramesh V, et al.Metabolic heterogeneity confers differences in melanoma metastatic potential[J]. Nature, 2020, 577(7788): 115-120. [26] Cai D, Wang J, Gao B, et al.RORγ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype[J]. Nat Commun, 2019, 10(1): 4621. [27] Pelton K, Freeman MR, Solomon KR.Cholesterol and prostate cancer[J]. Curr Opin Pharmacol, 2012, 12(6): 751-759. [28] Shafique K, Mcloone P, Qureshi K, et al.Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years' follow up[J]. BMC Cancer, 2012, 12: 25-33. [29] Tao M, Luo J, Gu T, et al.LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma[J]. Cell Death Dis, 2021, 12(9): 845-859. [30] Lewis CA, Brault C, Peck B, et al.SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J]. Oncogene, 2015, 34(40): 5128-5140. [31] Huang B, Song BL, Xu C.Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities[J]. Nat Metab, 2020, 2(2): 132-141. |