China Journal of Oral and Maxillofacial Surgery ›› 2023, Vol. 21 ›› Issue (1): 87-91.doi: 10.19438/j.cjoms.2023.01.015
• Review Articles • Previous Articles Next Articles
LIU Heng1, DUAN Xiao-feng2
Received:
2022-05-04
Revised:
2022-07-08
Online:
2023-01-20
Published:
2023-06-12
CLC Number:
LIU Heng, DUAN Xiao-feng. Research progress of ferritinophagy and related genes FTH1 and NCOA4 in oral squamous cell carcinoma[J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(1): 87-91.
[1] Slomski A.Global cancer burden grew from 2010 to 2019[J]. JAMA, 2022, 327(9): 804. [2] Lin L, Li Z, Yan L, et al.Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990-2019[J]. J Hematol Oncol, 2021, 14(1): 197-210. [3] La Rosa GRM, Gattuso G, Pedullà E, et al.Association of oral dysbiosis with oral cancer development[J]. Oncol Lett, 2020, 19(4): 3045-3058. [4] Zhang Z, Yao Z, Wang L, et al.Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14(12): 2083-2103. [5] Sui S, Zhang J, Xu S, et al.Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells[J]. Cell Death Dis, 2019, 10(5): 331-348. [6] Santana-Codina N, Gikandi A, Mancias JD.The role of NCOA4-mediated ferritinophagy in ferroptosis[J]. Adv Exp Med Biol, 2021, 1301: 41-57. [7] Dowdle WE, Nyfeler B, Nagel J, et al.Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis [8] Mancias JD, Wang X, Gygi SP, et al.Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509(7498): 105-109. [9] Kaur J, Debnath J.Autophagy at the crossroads of catabolism and anabolism[J]. Nat Rev Mol Cell Biol, 2015, 16(8): 461-472. [10] Gao M, Monian P, Pan Q, et al.Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9):1021-1032. [11] Ryu MS, Duck KA, Philpott CC.Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells[J]. Blood Cells Mol Dis, 2018, 69: 75-81. [12] Mathieu NA, Levin RH, Spratt DE.Exploring the roles of HERC2 and the NEDD4L HECT E3 Ubiquitin ligase subfamily in p53 signaling and the DNA damage response[J]. Front Oncol, 2021, 11: 659049. [13] Li N, Wang W, Zhou H, et al.Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med, 2020, 160: 303-318. [14] Feng H, Schorpp K, Jin J, et al.Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep, 2020, 30(10): 3411-3423. [15] Muckenthaler MU, Rivella S, Hentze MW, et al.A red carpet for iron metabolism[J]. Cell, 2017, 168(3): 344-361. [16] Heinsberg LW, Weeks DE, Alexander SA, et al.Iron homeostasis pathway DNA methylation trajectories reveal a role for STEAP3 metalloreductase in patient outcomes after aneurysmal subarachnoid hemorrhage[J]. Epigenetics Commun, 2021, 1: 4-31. [17] Yanatori I, Kishi F.DMT1 and iron transport[J]. Free Radical Biol Med, 2018, 133: 55-63. [18] Lin S, Sheng Q, Ma X, et al. [19] Hao L, Mi J, Song L, et al.SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes[J]. Neuroscience, 2021, 463: 216-226. [20] Zhang W, Xu A, Li Y, et al.A novel SLC40A1 p.Y333H mutation with gain of function of ferroportin: a recurrent cause of haemochromatosis in China[J]. Liver Int, 2019, 39(6): 1120-1127. [21] Li X, Lozovatsky L, Sukumaran A, et al.NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss[J]. Blood, 2020, 136(23): 2691-2702. [22] Li J, Liu J, Xu Y, et al.Tumor heterogeneity in autophagy-dependent ferroptosis[J]. Autophagy, 2021,17(11): 3361-3374. [23] Ni S, Yuan Y, Qian Z, et al.Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis[J]. Free Radical Biol Med, 2021, 169: 271-282. [24] Latunde-Dada GO.Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. [25] Zarjou A, Jeney V, Arosio P, et al.Ferritin ferroxidase activity: a potent inhibitor of osteogenesis[J]. J Bone Miner Res, 2010, 25(1): 164-172. [26] Cozzi A, Corsi B, Levi S, et al.Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: [27] Nai A, Lidonnici MR, Federico G, et al.NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice[J]. Haematologica, 2021, 106(3): 795-805. [28] Dixon SJ, Lemberg KM, Lamprecht MR, et al.Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. [29] Acoba MG, Alpergin ESS, Renuse S, et al.The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism[J]. Cell Rep, 2021, 34(11): 108869. [30] Lin R, Zhang Z, Chen L, et al.Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells[J]. Cancer Lett, 2016, 381(1): 165-175. [31] Huang T, Sun Y, Li Y, et al.Growth inhibition of a novel iron chelator, dpdtc, against hepatoma carcinoma cell lines partly attributed to ferritinophagy-mediated lysosomal ROS generation[J]. Oxid Med Cell Longev, 2018, 2018: 4928703. [32] Xu Z, Feng J, Li Y, et al.The vicious cycle between ferritinophagy and ROS production triggered EMT inhibition of gastric cancer cells was through p53/AKT/mTor pathway[J]. Chem Biol Interact, 2020, 328: 109196. [33] Yang Y, Liu Y, Guo R, et al.The novel dithiocarbamate, DpdtC suppresses HER2-overexpressed cancer cells by up-regulating NDRG1 [34] Lu W, Wu Y, Huang S, et al.A ferroptosis-related gene signature for predicting the prognosis and drug sensitivity of head and neck squamous cell carcinoma[J]. Front Genet, 2021, 12: 755486. [35] Gao M, Monian P, Pan Q, et al.Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032. [36] Alexandra T, Marina IM, Daniela M, et al.Autophagy-a hidden but important actor on oral cancer scene[J]. Int J Mol Sci, 2020, 21(23): 9325-9444. [37] Yang Y, Klionsky DJ.A novel role of UBQLNs (ubiquilins) in regulating autophagy, MTOR signaling and v-ATPase function[J]. Autophagy, 2020, 16(1):1-2. [38] Ko CP, Lin CW, Chen MK, e1 al. Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway[J]. Oral Oncol, 2015, 51(6): 593-601. [39] Qiu Y, Li C, Wang Q, et al.Tanshinone IIA induces cell death [40] Zhang CL, Song F, Zhang J, et al.Hypoxia-induced Bcl-2 expression in endothelial cells [41] Tang J, Yao C, Liu Y, et al.Arsenic trioxide induces expression of BCL-2 expression [42] Lu M, Chen WH, Wang CY, et al.Reciprocal regulation of miR-1254 and c-Myc in oral squamous cell carcinoma suppresses EMT-mediated metastasis and tumor-initiating properties through MAPK signaling[J]. Biochem Biophys Res Commun, 2017, 484(4): 801-807. [43] Utaipan T, Athipornchai A, Suksamrarn A, et al.Isomahanine induces endoplasmic reticulum stress and simultaneously triggers p38 MAPK-mediated apoptosis and autophagy in multidrug-resistant human oral squamous cell carcinoma cells[J]. Oncol Rep, 2017, 37(2): 1243-1252. [44] Liu J, Song X, Kuang F, et al.NUPR1 is a critical repressor of ferroptosis[J]. Nat Commun, 2021, 12(1): 647-660. [45] Huang C, Santofimia-Castaño P, Liu X, et al.NUPR1 inhibitor ZZW-115 induces ferroptosis in a mitochondria-dependent manner[J]. Cell Death Discov, 2021, 7(1): 269-279. [46] Jiang W, Zhang C, Zhang X, et al.CircRNA HIPK3 promotes the progression of oral squamous cell carcinoma through upregulation of the NUPR1/PI3K/AKT pathway by sponging miR-637[J]. Ann Transl Med, 2021, 9(10): 860-874. [47] Fan T, Chen Y, He Z, et al.Inhibition of ROS/NUPR1-dependent autophagy antagonises repeated cadmium exposure-induced oral squamous cell carcinoma cell migration and invasion[J]. Toxicol Lett, 2019, 314: 142-152. |
[1] | CHEN Hua, LI Jing, LUO Mei. Effect of salidroside on the growth of oral squamous cell carcinoma cells through regulating NRF2/KEAP1 pathway [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(5): 424-429. |
[2] | HUANG Can, LUO Tao, SUN Yu. The predictive value of modified frailty assessment tool for postoperative complications in elderly patients undergoing flap reconstruction with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 373-377. |
[3] | SUN Xiao-mei, DUAN Xiao-feng. Research progress of deubiquitinase in oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(3): 294-299. |
[4] | LI Jin-cun, ZHAI Kun, HU Chen, LIU Xu-ying, MA Xing-ping, MA Jian. Integration of WGNCA and PPI networks to identify key genes for oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(2): 128-136. |
[5] | ZHOU Xin-xia, LIU Jing-hao, GAN Gui-fang, CHEN Fu-xiang. The expression and biological functions of sphingosine-1-phosphate receptor 4 in oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 10-15. |
[6] | LI Hua-sheng, ZHOU Di, HAN Nan-nan, YAN Ming, RUAN Min. Lycorine suppressed oral squamous cell carcinoma cell proliferation and invasion via scap protein degradation: an experimental study [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 29-35. |
[7] | HAN Lin-zi, ZHOU Jian-hua, DONG lei, ZHAO Lu, YUAN Rong-tao. Research progress on the effect of cancer-associated fibroblasts on biological behavior of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(1): 84-91. |
[8] | LIU Heng, LI Yong-di, YIN Xin-hai, DUAN Xiao-feng. Expression of ferritin heavy chain 1 in head and neck squamous cell carcinoma and its effect on proliferation, migration and invasion of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 529-537. |
[9] | ZHAO Tong-chao, LIANG Si-yuan, ZHOU Zhi-hang, ZHU Fang-xing, JU Wu-tong, TAN Yi-ran, LIU Ying, ZHONG Lai-ping. Correlation between BMI and prognosis and induction chemotherapy in patients with locally advanced oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 559-565. |
[10] | ZHU Fang-xing, ZHOU Zhi-hang, JU Wu-tong, TAN Yi-ran, LIU Ying, ZHONG Lai-ping, ZHAO Tong-chao. Baseline derived neutrophil to lymphocyte ratio predicting the prognosis of local advanced oral squamous cell carcinoma: a retrospective study over 10 years [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 566-571. |
[11] | JIN Neng-hao, TIAN Yu, ZHU Liang, QIAO Bo, LI Liang-bo, ZHANG Hai-zhong, ZHANG Lei. Clinical significance of PD-L1 and tumor immune microenvironment in predicting neoadjuvant therapy for oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 572-578. |
[12] | LI Gui-zhong, LI Jie-ying, ZHOU Kai, MENG Yu-xiang, WANG Ke-xin, GE Sheng-you, SONG Kai, FENG Yuan-yong, TAO Yue-qin, ZHAN Xiao-hong, SHANG Wei. Effect of extranodal extension on TNM staging and survival in patients with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 377-383. |
[13] | SI Cheng-yun, LIU Meng-qiu, WENG Hai-yan, ZHANG Li-yu, AN Xing-fei, ZHOU Yu. Accuracy of MRI to measure and evaluate clinical staging of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 390-396. |
[14] | WU Zhu-hao, ZHANG Xing-wei, SUN Ya-wei, LI Zi-hui, CHEN Xin, PU Yu-mei, HU Qin-gang, DONG Ying-chun, SUN Guo-wen. Application of ICG fluorescence navigation during salvage surgery for advanced oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(3): 248-252. |
[15] | REZIWANGULI·Yasen, MAIREPATI·Maiming, LI Chen-xi, GONG Zhong-cheng. Research progress in the role and mechanism of Porphyromonas gingivalis in promoting oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(2): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||