China Journal of Oral and Maxillofacial Surgery ›› 2024, Vol. 22 ›› Issue (5): 505-509.doi: 10.19438/j.cjoms.2024.05.016
• Review Articles • Previous Articles Next Articles
TAO Wen-hao1, TIAN Gang1, HAN Xu1, ZHU Ying-chun2, XU Xiao-gang1
Received:
2023-12-07
Revised:
2024-01-15
Online:
2024-09-20
Published:
2024-09-29
CLC Number:
TAO Wen-hao, TIAN Gang, HAN Xu, ZHU Ying-chun, XU Xiao-gang. Research progress of titanium alloy scaffolds and its surface modification technology[J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(5): 505-509.
[1] Wilde F, Winter K, Kletsch K, et al.Mandible reconstruction using patient-specific pre-bent reconstruction plates: comparison of standard and transfer key methods[J]. Int J Comput Assist Radiol Surg, 2015, 10(2): 129-140. [2] Osazuwa-Peters N, Arnold LD, Loux TM, et al.Factors associated with increased risk of suicide among survivors of head and neck cancer: a population-based analysis[J]. Oral Oncol, 2018, 81: 29-34. [3] Ng SL, Das S, Ting Y, et al. Benefits and biosafety of use of 3D-printing technology for titanium biomedical implants: a pilot study in the rabbit model[J]. Int J Molecul Sci, 2021, 22(16): 8480.e1-e19. [4] Li S, Li X, Hou W, et al.Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials[J]. Sci China Mater, 2018, 61(4): 525-536. [5] Wang Y, Zhang Y, Sculean A, et al.Macrophage behavior and interplay with gingival fibroblasts cultured on six commercially available titanium, zirconium, and titanium-zirconium dental implants[J]. Clin Oral Investig, 2019, 23(8): 3219-3227. [6] Domínguez-Trujillo C, Peón E, Chicardi E, et al.Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications[J]. Surf Coat Technol, 2018, 333: 158-162. [7] Wang C, Wang S, Yang Y, et al.Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant[J]. J Biomater Sci Polym Ed, 2018, 29(13): 1595-1611. [8] Murr LE, Gaytan SM, Medina F, et al.Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays[J]. Philos Trans A Math Phys Eng Sci, 2010, 368(1917): 1999-2032. [9] Wu M, Lee M, Wu C, et al. [10] Wang Z, Zhang M, Liu Z, et al.Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration[J]. Mater Des, 2022, 218: 110721. [11] Chen H, Han Q, Wang C, et al.Porous scaffold design for additive manufacturing in orthopedics: a review[J]. Front Bioeng Biotechnol, 2020, 8: 609. [12] Abbasi N, Hamlet S, Love RM, et al.Porous scaffolds for bone regeneration[J]. J Sci Adv Mater Devices, 2020,5(1): 1-9. [13] Deb P, Deoghare AB, Borah A, et al.Scaffold development using biomaterials: a review[J]. Mater Today Proc, 2018, 5(5, Part 2): 12909-12919. [14] Ran Q, Yang W, Hu Y, et al.Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J]. J Mech Behav Biomed Mater, 2018, 84: 1-11. [15] Wang R, Ni S, Ma L, et al.Porous construction and surface modification of titanium-based materials for osteogenesis: a review[J]. Front Bioeng Biotechnol, 2022,10: 973297. [16] Zhang Y, Sun N, Zhu M, et al.The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis[J]. Biomater Adv, 2022,133: 112651. [17] Jäger M, Jennissen H, Dittrich F, et al.Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants[J]. Materials(Basel), 2017,10(11): 1302. [18] Ferraris S, Venturello A, Miola M, et al.Antibacterial and bioactive nanostructured titanium surfaces for bone integration[J]. Appl Surf Sci, 2014, 311: 279-291. [19] Bhosle SM, Tewari R, Friedrich CR.Dependence of nanotextured titanium orthopedic surfaces on electrolyte condition[J]. J Surf Eng Mater Adv Technol, 2016, 6(4):164-175. [20] Coathup MJ, Blunn GW, Mirhosseini N, et al.Controlled laser texturing of titanium results in reliable osteointegration[J]. J Orthop Res, 2017, 35(4): 820-828. [21] Quinn J, Mcfadden R, Chan C, et al.Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation[J]. iScience, 2020, 23(11): 101745. [22] Lee H, Dellatore SM, Miller WM, et al.Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. [23] Pan G, Sun S, Zhang W, et al.Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials[J]. J Am Chem Soc, 2016, 138(45): 15078-15086. [24] Cheng L, Sun X, Zhao X, et al.Surface biofunctional drug-load ed electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars[J]. Biomaterials, 2016, 83: 169-181. [25] Cheng W, Zeng X, Chen H, et al.Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine[J]. ACS Nano, 2019, 13(8): 8537-8565. [26] Chien C, Tsai W.Poly(dopamine)-assisted immobilization of arg-gly-asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells[J]. ACS Appl Mater Interfaces, 2013, 5(15): 6975-6983. [27] Li M, Liu X, Xu Z, et al.Dopamine modified organic-inorganic hybrid coating for antimicrobial and osteogenesis[J]. ACS Appl Mater Interfaces, 2016,8(49): 33972-33981. [28] Wang X, Lei X, Yu Y, et al.Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model[J]. Biomater Sci, 2021, 9(15): 5192-5208. [29] Zhu Y, Liu D, Wang X, et al.Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues[J]. J Mater Chem B, 2019, 7(12): 2019-2031. [30] Bose S, Tarafder S, Banerjee SS, et al.Understanding [31] Huynh V, Ngo NK, Golden TD.Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications[J]. Int J Biomater, 2019: 3806504. [32] Qin J, Yang D, Maher S, et al.Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration[J]. J Mater Chem B, 2018, 6(19): 3136-3144. [33] Zhou W, Peng X, Ma Y, et al.Two-staged time-dependent materials for the prevention of implant-related infections[J]. Acta Biomater, 2020,101: 128-140. [34] Ke D, Robertson SF, Dernell WS, et al.Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: an [35] Gao J, Wang M, Shi C, et al.A facile green synthesis of trace Si, Sr and F multi-doped hydroxyapatite with enhanced biocompatibility and osteoconduction[J]. Mater Lett, 2017,196: 406-409. [36] Sorushanova A, Delgado LM, Wu Z, et al.The collagen suprafamily: from biosynthesis to advanced biomaterial development[J]. Adv Mater, 2019, 31(1): e1801651. [37] Zhao Y, Bai L, Zhang Y, et al.Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis,and osteogenesis[J]. Biomaterials, 2022, 288: 121684. [38] Yilmaz E, Cakiroglu B, Gokce A, et al.Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition[J]. Mater Sci Eng C Mater Biol Appl, 2019, 101: 292-305. [39] Kitajima H, Hirota M, Iwai T, et al.Computational fluid simulation of fibrinogen around dental implant surfaces[J]. Int J Mol Sci, 2020, 21(2): 660. [40] Leighton Y, Weber B, Rosas E, et al.Autologous fibrin glue with collagen carrier during maxillary sinus lift procedure[J]. J Craniofac Surg, 2019,30(3):843-845. |
[1] | TAI Mao-zhong, QIN Zhong-ping, ZHENG Jia-wei, LI Ke-lei, LIU Xue-jian, LI Kai, YUAN Si-ming, FAN Xin-dong, ZHOU De-kai, DONG Chang-xian, JI Yi, GU Song, HUO Ran, YANG Yao-wu, WANG Xu-kai. Chinese expert consensus on diagnosis and treatment of localized intravascular coagulopathy [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 313-321. |
[2] | YUAN Lu-han, CHU Chen, YUAN Rong-tao. Research progress of application of highly active bone substitute in materialsmaxillofacial bone tissue engineering [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 394-399. |
[3] | LI Yong-qing, ZHANG Yun, HUI Shuo-yi, HUI Xiao-yong, XU Guang-jie, YANG Xia, XIAO Bo-cheng, HOU Rui. Comparison and analysis of clinical application characteristics of three-dimensional model teeth with three different materials [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(3): 239-244. |
[4] | YU Xi-xi, XU Zhu-feng, ZHANG Yuan-yuan, LYU Ming-ming, WANG Jin-bing, WANG Yue-ping. Development of a 3D printed jaw deviation measuring instrument and its application in the rehabilitation period of patients with jaw asymmetry [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(3): 255-260. |
[5] | ZHOU Chen, WANG Wen-xue, JIA Ren-jie, LI Xin, MEI Dong-mei, LI Ya-nan, ZHAO Bao-dong. Evaluation of the effect of coral hydroxyapatite bone block grafting in severe alveolar bone defects [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(3): 231-236. |
[6] | LIU Yi-ge, WANG Zi-lin, GUO Zhi-yong, WU Hao, WANG Wen-ying, HAN Jing, LIU Jian-nan, ZHANG Chen-ping. Synthesis of carbon dots with dual roles of osteogenic and antibacterial effects for infected bone defects treatment [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(1): 11-18. |
[7] | XUN Xing-xiang, SUN Wei, WANG He-jing, CHU Chen, ZHAO Qian, XU Xiao, YUAN Rong-tao. Construction and in vitro evaluation of an injectable multifunctional liposome-hydrogel composite for jaw defect repair [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(6): 534-540. |
[8] | LUO Bin, ZHOU Mei-yun, TIAN Xiu-yun, CHEN Xin-ru, HAN Rui, XU Jin-cheng. Application of digital, 3D printing combined with endoscopic assisted technology in the treatment of12patients with zygomatic, zygomatic arch fractures [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(2): 188-192. |
[9] | ZHANG Xiu-xiu, SUN Jian, LI Ya-li, LIU Yan-shan, CHEN Li-qiang, XU Yao-xiang, XU Ze-xian, MENG Kun, SUN Ming, ZHOU Dong-yang, XU Dian, GAO Xiao-han, CHENG Li-di. Preparation and property of digital drug-loaded chlorhexidine gluconate PLA/nHA composite scaffold [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(1): 15-21. |
[10] | SHI Wei-hong, LIU Yan, AMANNISAHAN·Jiapaer, AYIDANA·Wulaerbieke, HE Qi, LING Bin. Clinical application of 3D printed positioning guides in assisted preparation of anterolateral thigh perforator flap [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(1): 52-57. |
[11] | CHEN Jia-yi, SUN Yi-ting, LIU Jia-qiang. A case report of alveolar bone distraction osteogenesis in congenital bilateral severe alveolar cleft deformity [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(1): 101-104. |
[12] | ZHU Lei, LIU Qing-cheng, YU Hong-bo. Radiographic analysis of osteogenesis of two bone implant materials after augmented corticotomy-assisted surgical orthodontics [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(6): 525-530. |
[13] | YANG Yong, DING Ming-chao, YANG Tao, LIU Yi-wen, LU Jin-biao, TIAN Lei. Development and application of a novel microsurgery training tool based on 3D printed hydrogel [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(6): 557-561. |
[14] | ZHAO Han-jiang, WANG Ze-ying, LIN Dan, SHEN Guo-fang. Effect of fibrin glue on osteogenesis and mineralization during rapid maxillary expansion [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(5): 397-404. |
[15] | DU Fu-jiang, HE Shui-ming, ZHU Peng-na. Clinical application of three-dimensional preformed titanium mesh assisted by individualized 3D printing skull model in the treatment of 6 patients with complex maxillary fractures [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(4): 368-371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||