[1] Zhang WB, Saxena S, Fakhrzadeh A, et al.Use of human dental pulp and endothelial cell seeded tyrosine-derived polycarbonate scaffolds for robust in vivo alveolar jaw bone regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 796-807. [2] Huang D, Li KD, Zheng XH, et al.Hyperbaric oxygen therapy: an effective auxiliary treatment method for large jaw cysts[J]. Int J Med Sci, 2021, 18(16): 3692-3696. [3] Zhao J, Zhou YH, Zhao YQ, et al.Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering[J]. Stem Cell Res Ther, 2023,14(1): 39-59. [4] 陈艺菲,郑赛男,阙林. 3D打印复合材料骨组织工程支架及其在颌面骨再生中的研究进展[J].山东医药, 2022, 62(25): 83-86. Chen YF, Zheng SN, Que L.Research progress of 3D printed composite bone tissue engineering scaffold and its application in maxillofacial bone regeneration[J]. Shandong Medicine,2022, 62(25): 83-86. [5] 王荷静, 张采欣, 寻兴祥, 等. 骨替代材料在上颌窦底外提升同期牙种植中促进骨再生的价值[J].中国口腔颌面外科杂志, 2023, 21(3): 218-224. Wang HJ, Zhang CX, Xun XX, et al.The value of bone replacement materials in promoting bone regeneration in simultaneous dental implantation outside maxillary sinus[J]. China Journal of Oral and Maxillofacial Surgery, 2019, 21(3): 218-224. [6] Chang S, Wang S, Liu Z, et al.Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering[J]. Gels, 2022, 8(6): 389-403. [7] Mani MP, Sadia M, Jaganathan SK, et al.A review on 3D printing in tissue engineering applications[J]. J Polymer Eng, 2022, 42(3): 243-265. [8] Wang C, Huang W, Zhou Y, et al.3D printing of bone tissue engineering scaffolds[J]. Bioact Mater, 2020,5(1): 82-91. [9] Liao M, Zhu S, Guo A, et al.3D printed bioactive glasses porous scaffolds with high strength for the repair of long-bone segmental defects[J]. Compos B Eng, 2023,254: 110582. [10] Zhou Y, Wu C, Chang J.Bioceramics to regulate stem cells and their microenvironment for tissue regeneration[J]. Mater Today Bio, 2019, 24: 41-56. [11] Koons GL, Diba M, Mikos AG.Materials design for bone-tissue engineering[J]. Nat Rev Mater, 2020, 5(8): 584-603. [12] 余文,孟昊业,孙逊,等. 3D打印生物陶瓷在骨组织工程中的研究现状[J].中国矫形外科杂志, 2018, 26(14): 1306-1310. Yu W, Meng HY, Sun X, et al.3D printing porous ceramic scaffolds for bone tissue engineering: a review[J]. Orthopedic Journal of China, 2018,26(14): 1306-1310. [13] 欧阳婉璐,钱玉芬.生物陶瓷材料负载冻干BMP-2对牙槽突裂骨改建的影响[J].中国口腔颌面外科杂志, 2018, 16(3): 221-226. Ouyang WL, Qian YF.Effect of bioceramic materials loaded lyophilized BMP-2 on alveolar fracture bone remodeling[J]. China Journal of Oral and Maxillofacial Surgery, 2018, 16(3): 221-226. [14] Cao CL, Huang PR, Prasopthum A, et al.Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations[J]. Biomater Sci, 2021, 10(1): 138-152. [15] Yang YJ, Kulkarni A, Soraru GD, et al.3D Printed SiOC(N) ceramic scaffolds for bone tissue regeneration: improved osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Int J Mol Sci, 2021,22(24): 13676. [16] Liu X, Zhao NR, Liang HF, et al.Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis[J]. J Orthop Translat, 2022, 37: 152-162. [17] 林嘉宜, 袁伟壮, 张洪武. 医用3D打印材料应用于骨缺损修复的研究进展[J].中国临床解剖学杂志, 2017, 35(6): 708-712. Lin JY, Yuan WZ, Zhang HW.Research progress of medical 3D printing materials for bone defect repair[J]. Chinese Journal of Clinical Anatomy, 2017, 35(6): 708-712. [18] Im S, Choe G, Seok JM, et al.An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering[J]. Int J Biol Macromol, 2022,205:520-529. [19] Wang HP, Cui JY, Li ST, et al.Fabrication of functional and biodegradable scaffolds using nucleated poly (4-hydroxybutyrate) via 3D printing for bone tissue engineering[J]. Polym Test, 2023, 118: 107881. [20] Hassan MN, Yassin MA, Eltawila AM, et al.Contact osteogenesis by biodegradable 3D-printed poly(lactide-co-trimethylene carbonate)[J]. Biomater Res, 2022,26(1): 55-74. [21] Lewns FK, Tsigkou O, Cox LR, et al.Hydrogels and bioprinting in bone tissue engineering: creating artificial stem-cell niches for in vitro models[J]. Adv Mater, 2023, 35(52): e2301670. [22] 任荣, 张剑飞, 司家文, 等. 海藻酸钠/明胶复合水凝胶用于3D生物打印的初步研究[J].中国口腔颌面外科杂志, 2017,15(5): 402-407. Ren R, Zhang JF, Si JW, et al.Preliminary study of sodium alginate/gelatin composite hydrogel for 3D bioprint[J]. China Journal of Oral and Maxillofacial Surgery, 2017,15(5): 402-407. [23] Zou Q, Tian XB, Luo SW, et al.Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks[J]. Carbohydr Polym, 2021,269: 118222. [24] Hernandez I, Kumar A, Joddar B.A Bioactive hydrogel and 3D printed polycaprolactone system for bone tissue engineering[J]. Gels, 2017,3(3): 26-39. [25] Rajabi M, Cabral JD, Saunderson S, et al.3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration[J]. J Biomed Mater Res A, 2023, 111(9): 1468-1481. [26] van der Heide D, Cidonio G, Stoddart MJ, et al. 3D printing of inorganic-biopolymer composites for bone regeneration[J]. Biofabrication, 2022,14(4): e042003. [27] Han YT, Wei QQ, Chang PB, et al.Three-dimensional printing of hydroxyapatite composites for biomedical application[J]. Crystals, 2021,11(4): 353. [28] Gang FL, Ye WL, Ma CY, et al.3D printing of PLLA/biomineral composite bone tissue engineering scaffolds[J]. Materials(Basel), 2022,15(12): 4280-4295. [29] Cakmak AM, Unal S, Sahin A, et al.3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering[J]. Polymers(Basel), 2020, 12(9): 1962-1976. [30] Distler T, Fournier N, Grünewald A, et al.Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization[J]. Front Bioeng Biotechnol, 2020, 8: 552-568. [31] Najafabadi FM, Karbasi S, Benisi SZ, et al.Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering[J]. Int J Biol Macromol, 2023, 243: 125218. [32] Petretta M, Gambardella A, Desando G, et al.Multifunctional 3D-printed magnetic polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering[J]. Polymers(Basel), 2021, 13(21): 3825-3840. |