[1] Roohani I, Yeo GC, Mithieux S, et al.Emerging concepts in bone repair and the premise of soft materials[J]. Curr Opin Biotechnol, 2022, 74: 220-229. [2] Moghaddam A, Bahrami M, Mirzadeh M, et al.Recent trends in bone tissue engineering: a review of materials, methods, and structures[J]. Biomed Mater, 2024, 19(4): 042007. [3] Ding W, Ge Y, Zhang T, et al.Advanced construction strategies to obtain nanocomposite hydrogels for bone repair and regeneration[J]. NPG Asia Mater, 2024, 16(1): 14. [4] Peng HR, Zhao Q, Xiao T, et al.Preparation and properties of magnesium/strontium modified hydroxyapatite whisker bone tissue engineering scaffold[J]. Mater Lett, 2024, 361: 135922. [5] Liu Z, Tian G, Liu L, et al.A 3D-printed PLGA/HA composite scaffold modified with fusion peptides to enhance its antibacterial, osteogenic and angiogenic properties in bone defect repair[J]. J Mate Res Technol, 2024, 30: 5804-5819. [6] Yu ZH, Yuan Z, Xia C, et al.High temperature flexural deformation properties of engineered cementitious composites (ECC) with hybrid fiber reinforcement[J]. Res App Mater Sci, 2020, 2(2): 17-26. [7] Li Y, Tang S, Luo Z, et al.Chitin whisker/chitosan liquid crystal hydrogel assisted scaffolds with bone-like ECM microenvironment for bone regeneration[J]. Carbohydr Polym, 2024, 332: 121927. [8] Li Z, Pan D, Han Z, et al.Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites[J]. Adv Compos Hybrid Mater, 2023, 6(6): 224. [9] Chen J, Zhu Z, Chen J, et al.Photocurable liquid crystal hydrogels with different chargeability and tunable viscoelasticity based on chitin whiskers[J]. Carbohydrate Polym, 2023, 301(Pt A): 120299. [10] Zhao R, Chen S, Yuan B, et al.Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics[J]. Nanoscale, 2019, 11(6): 2721-2732. [11] 张雪. 硼酸镁及硼酸铝晶须的制备及其机理研究[D].沈阳: 东北大学, 2018. Zhang X.Research on the synthesis and mechanism of magnesium borate and aluminum borate whiskers[D]. Shenyang: Northeast University, 2018. [12] Wang T, Jiang W, Liu J, et al.Simple and novel synthesis of zirconia whiskers from a phosphate flux[J]. Ceram Int, 2019, 45(4): 4514-4519. [13] Wu H, Guo A, Kong D, et al.Nacre-like carbon fiber-reinforced biomimetic ceramic composites: fabrication, microstructure, and mechanical performance[J]. Ceram Int, 2024, 50(14): 25388-25399. [14] Ji S, Zhang S, Wang Z, et al.High-impact performance and thermal properties of polyimine nanocomposites reinforced by silicon carbide nano-whiskers[J]. Mater (Basel), 2023, 16(13): 4587. [15] Liu Z, Wang S, Pan S, et al.Preparation, growth mechanism, and application of Mg2B2O5 whiskers: a review[J]. Prog Cryst Growth Character Mater, 2023, 69(2): 100602. [16] Wagner RS, Ellis WC.Vapor-liquid-solid mechanism of single crystal growth[J]. Appl Phys Lett, 1964, 4(5): 89-90. [17] Qi X, Luo X, Zhang L, et al.In situ synthesis and interfacial bonding mechanism of SiC in MgO-SiC-C refractories[J]. Inter J Appl Ceram Technol, 2022, 19(5): 2723-2733. [18] Yasue H, Yoshimura M, Sumida H, et al.Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure[J]. Circulation, 1994, 90(1): 195-203. [19] Lu D, Cheng S, Zhang L, et al.Effect of holding time on SiC whiskers growth of SiCw/SiC composites based on SLS technology and their mechanical properties[J]. Ceram Int, 2022, 48(22): 33019-33027. [20] Li J, Zhang F, He P, et al.Electromagnetic wave absorption property of SiC whiskers regulated by stacking faults and SiC@SiO2 core-sheath microstructure[J]. J Mater Res Technol, 2023, 24: 995-1004. [21] Zadorozhnaya LA, Tarasov AP, Volchkov IS, et al.Morphology and luminescence of flexible free-standing ZnO/Zn composite films grown by vapor transport synthesis[J]. Mater (Basel), 2022, 15(22): 8165. [22] Zhang T, Liu J, Qi J, et al.Biosafety and chemical solubility studies of multiscale crystal-reinforced lithium disilicate glass-ceramics[J]. J Biomed Mater Res B Appl Biomater, 2024, 112(3): e35400. [23] Zhang C, Wu W, Hu H, et al.Preparation of SiO2/Si3N4ws/PU reinforced coating and its reinforcement mechanism for SLS-molded TPU materials[J]. J Appl Polym Sci, 2023, 140(35): e54355. [24] Wu Y, Zhang QP, Zhou D, et al.One-dimensional lead borate nanowhiskers for the joint shielding of neutron and gamma radiation: controlled synthesis, microstructure, and performance evaluation[J]. Cryst Eng Comm, 2017, 19(48): 7260-7269. [25] Mu Y, Yan L, Liu P, et al.High-temperature-resistant ZrO2 coating with SiC-whisker-enhanced interfacial bonding strength and improved emissivity for flexible silica fibre fabric[J]. Ceram Int, 2023, 49(4): 6825-6833. [26] Wei D, Sun H, Zhang M, et al.Mapping the technological trajectory of inorganic nanomaterials in the cancer field[J].J Nano Res, 2024, 26(4): 66. [27] Abdikakharovich SA, Rauf MA, Khattak S, et al.Exploring the antibacterial and dermatitis-mitigating properties of chicken egg white-synthesized zinc oxide nano whiskers[J]. Front Cell Infect Microbiol, 2023, 13: 1295593. [28] Wang J, Lei J, Hu Y, et al.Calcium silicate whiskers-enforced poly(ether-ether-ketone) composites with improved mechanical properties and biological activities for bearing bone reconstruction[J]. Macromol Biosci, 2022, 22(12): e2200321. [29] Kumar A, Dixit K, Sinha N.Fabrication and characterization of additively manufactured CNT-bioglass composite scaffolds coated with cellulose nanowhiskers for bone tissue engineering[J]. Ceram Int, 2023, 49(11, Part A): 17639-17649. [30] Liu K, Li L, Chen J, et al.Bone ECM-like 3D printing scaffold with liquid crystalline and viscoelastic microenvironment for bone regeneration[J]. ACS Nano, 2022, 16(12): 21020-21035. [31] Liu K, Zhu L, Tang S, et al.Fabrication and evaluation of a chitin whisker/poly(l-lactide) composite scaffold by the direct trisolvent-ink writing method for bone tissue engineering[J]. Nanoscale, 2020, 12(35): 18225-18239. [32] Peng H, Ling T, Zhang Y, et al.Nanowhiskers orchestrate bone formation and bone defect repair by modulating immune cell behavior[J]. ACS Appl Mater Inter, 2023, 15(7): 9120-9134. [33] Qi F, Gao X, Wang C, et al.In situ grown silver nanoparticles on tetrapod-like zinc oxide whisker for photocatalytic antibacterial in scaffolds[J]. Mater Today Sustain, 2022, 19: 100210. |