[1] Vasilev K, Cook J, Griesser HJ.Antibacterial surfaces for biomedical devices[J]. Expert Rev Med Devices, 2009, 6(5): 553-567. [2] Barros J, Grenho L, Fernandes MH, et al.Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite[J]. Colloids Surf B Biointerfaces, 2015, 130: 305-314. [3] Lobato-Aguilar HA, Lizama-Uc G, Uribe-Calderon JA, et al.Antibacterial properties and release kinetics of chlorhexidine diacetate from montmorillonite and palygorskite clays[J]. J Biomater Appl, 2020, 34(8): 1052-1958. [4] Cortizo MC, Oberti TG, Cortizo MS, et al.Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion[J]. J Dent, 2012, 40(4): 329-337. [5] Hiraishi N, Yiu CK, King NM, et al.Chlorhexidine release and antibacterial properties of chlorhexidine-incorporated polymethyl methacrylate-based resin cement[J]. J Biomed Mater Res B Appl Biomater, 2010, 94(1): 134-140. [6] Hook ER, Owen OJ, Bellis CA, et al.Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles[J]. J Nanobiotechnology, 2014, 12: 3-11. [7] de Souza CA, Colombo AP, Souto RM, et al. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity[J]. Colloids Surf B Biointerfaces, 2011, 87(2): 310-318. [8] Yang Y, Xu Z, Guo Y, et al.Novel core-shell CHX/ACP nanoparticles effectively improve the mechanical, antibacterial and remineralized properties of the dental resin composite[J]. Dent Mater, 2021, 37(4): 636-647. [9] 刘峰, 孙健, 李亚莉, 等. 骨形态发生蛋白2壳聚糖纳米缓释载体的制备及性能测定[J]. 上海口腔医学, 2015, 24(2): 147-150. [10] Zhou DY, Xu ZX, Li YL, et al.Preparation and characterization of thermosensitive hydrogel system for dual sustained-release of chlorhexidine and bovine serum albumin[J]. Mater Lett, 2021, 300: 130121. [11] Chen X, Gao C, Jiang J, et al.3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration[J]. Biomed Mater, 2019, 14(6): 065003. [12] Murphy SV, Atala A.3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785. [13] 陈旭卓, 周知航, 郑吉驷, 等. 3D生物打印技术在口腔颌面部骨组织缺损修复的研究进展[J]. 中国口腔颌面外科杂志, 2018,16(3): 95-99. [14] Hassan H.Nanomaterials for alternative antibacterial therapy[J]. Int J Nanomedicine, 2017, 12: 8211-8225. [15] Xue Z, Zhao X, Lin Y, et al.Preparation and drug release behavior of pH-responsive bovine serum albumin-loaded chitosan microspheres[J]. J Ind Eng Chem, 2015, 21: 1389-1397. [16] Liang L, Huang T, Yu S, et al.Study on 3D printed graphene/carbon fiber multi-scale reinforced PLA composites[J]. Mater Lett, 2021,300: 130173. [17] Zhou Z, Yao Q, Li L, et al.Antimicrobial activity of 3D-printed poly(ε-Caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres[J]. Med Sci Monit, 2018, 24: 6934-6945. [18] 常思佳, 杨柳, 李冉. 明胶-羟基磷灰石-磷酸三钙支架对hDPSCs的成骨刺激作用[J]. 上海口腔医学, 2020, 29(5): 492-498. [19] Veronesi F, Martini L, Giavaresi G, et al.Bone regenerative medicine: metatarsus defects in sheep to evaluate new therapeutic strategies for human long bone defect. A systematic review[J]. Injury, 2020, 51(7): 1457-1467. [20] Cooper GM, Mooney MP, Gosain AK, et al.Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect[J]. Plast Reconstr Surg, 2010, 125(6): 1685-1692. [21] Wang X, Liu M, Li H, et al.MgO-incorporated porous nanofibrous scaffold promotes osteogenic differentiation of pre-osteoblasts[J]. Mater Lett, 2021, 299(4): 130098. [22] Deng N, Sun J, Li Y, et al.Experimental study of rhBMP-2 chitosan nano-sustained release carrier-loaded PLGA/nHA scaffolds to construct mandibular tissue-engineered bone[J]. Arch Oral Biol, 2019, 102(1): 16-25. [23] 张耀升, 张锴, 陈欣慰, 等. 3D打印个体化钛网的机械力学性能及生物相容性分析[J]. 上海口腔医学, 2020, 29(3): 250-256. [24] Alcaide M, Serrano MC, Pagani R, et al.L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-betaTCP/agarose biomaterial[J]. J Biomed Mater Res A, 2009, 89(2): 539-549. [25] Wang Z, Sun J, Li Y, et al.Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP-2, VEGF, and TGF-β1 on osteogenic differentiation[J]. J Cell Biochem, 2020, 121(3): 2394-2405. [26] 李林峰, 李月, 李瑞玉, 等. 骨移植和组织工程支架材料在上颌窦提升口腔种植修复中的应用[J]. 中国组织工程研究, 2017, 21(34): 5558-5564. [27] Family R, Solatihashjin M, Nik SN, et al.Surface modification for titanium implants by hydroxyapatite nanocomposite[J]. Caspian J Intern Med, 2012, 3(3):460-465. [28] Gao C, Peng S, Feng P, et al.Bone biomaterials and interactions with stem cells[J]. Bone Res, 2017, 5: 17059. [29] 李敏, 唐元, Shaikh AB, 等. 聚乳酸/羟基磷灰石纳米复合物对MC3T3-E1细胞增殖活性的影响[J]. 中国组织工程研究, 2014, 18(43): 6929-6934. |