
China Journal of Oral and Maxillofacial Surgery ›› 2026, Vol. 24 ›› Issue (1): 83-88.doi: 10.19438/j.cjoms.2026.01.013
• Review Articles • Previous Articles Next Articles
Wang Yue, Bao Chongyun
Received:2025-02-06
Revised:2025-03-25
Published:2026-02-06
CLC Number:
Wang Yue, Bao Chongyun. Progress in the regulation and mechanisms of osteoinduction by the surface microstructure of calcium phosphate ceramics[J]. China Journal of Oral and Maxillofacial Surgery, 2026, 24(1): 83-88.
| [1] Almulhim KS, Syed MR, Alqahtani N, et al.Bioactive inorganic materials for dental applications: a narrative review[J]. Materials (Basel), 2022, 15(19): 6864. [2] Bohner M, Santoni BLG, Döbelin N.β-tricalcium phosphate for bone substitution: synthesis and properties[J]. Acta Biomater, 2020, 113: 23-41. [3] Urist MR.Bone: formation by autoinduction[J]. Science, 1965, 150(3698): 893-899. [4] Kokubo T, Yamaguchi S.Novel bioactive materials developed by simulated body fluid evaluation: surface-modified Ti metal and its alloys[J]. Acta Biomater, 2016, 44: 16-30. [5] Guo X, Li M, Qi W, et al.Serial cellular events in bone formation initiated by calcium phosphate ceramics[J]. Acta Biomater, 2021, 134: 730-743. [6] Galván-Chacón VP, de Melo Pereira D, Vermeulen S, et al. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic[J]. Bioact Mater, 2023, 19: 127-138. [7] Shen JZ, Kosmac T.Advanced ceramics for dentistry[M]. Oxford: Butterworth-Heinemann, 2014: 151-172. [8] Xiao D, Zhang J, Zhang C, et al.The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved[J]. Acta Biomater, 2020, 106: 22-33. [9] Davison NL, Luo X, Schoenmaker T, et al.Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis [10] Duan R, van Dijk LA, Barbieri D, et al. Accelerated bone formation by biphasic calcium phosphate with a novel sub-micron surface topography[J]. Eur Cell Mater, 2019, 37: 60-73. [11] Zhang J, Dalbay MT, Luo X, et al.Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis[J]. Acta Biomater, 2017, 57: 487-497. [12] Iaquinta MR, Torreggiani E, Mazziotta C, et al. [13] Li X, Liu M, Chen F, et al.Design of hydroxyapatite bioceramics with micro-/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells[J]. Nanoscale, 2020, 12(13): 7284-7300. [14] Xu D, Wan Y, Li Z, et al.Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells[J]. Biomater Sci, 2020, 8(12): 3286-3300. [15] Li M, Guo X, Qi W, et al.Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. J Mater Chem B, 2020, 8(9): 1863-1877. [16] Chen X, Wang M, Chen F, et al.Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics[J]. Acta Biomater, 2020, 103: 318-332. [17] Zou M, Sun J, Xiang Z.Induction of M2-type macrophage differentiation for bone defect repair [18] Duan R, Zhang Y, van Dijk L, et al. Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111948. [19] Li M, Guo X, Qi W, et al.Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. J Mater Chem B, 2020, 8(9): 1863-1877. [20] Humbert P, Kampleitner C, De Lima J, et al.Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis[J]. Acta Biomater, 2024, 176: 417-431. [21] Davison NL, Gamblin AL, Layrolle P, et al.Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate[J]. Biomaterials, 2014, 35(19): 5088-5097. [22] Jeong H, Kim D, Montagne K, et al.Differentiation-inducing effect of osteoclast microgrooves for the purpose of three-dimensional design of regenerated bone[J]. Acta Biomater, 2023, 168: 174-184. [23] Akasaka T, Hayashi H, Tamai M, et al.Osteoclast formation from mouse bone marrow cells on micro/nano-scale patterned surfaces[J]. J Oral Biosci, 2022, 64(2): 237-244. [24] Duan R, Barbieri D, Luo X, et al.Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes[J]. Biomater Sci, 2017, 6(1): 136-145. [25] Holland EN, Fernández-Yagüe MA, Zhou DW, et al.FAK, vinculin, and talin control mechanosensitive YAP nuclear localization[J]. Biomaterials, 2024, 308: 122542. [26] Li N, Chen G, Liu J, et al.Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells[J]. ACS Appl Mater Interfaces, 2014, 6(19): 17134-17143. [27] Chen S, He T, Zhong Y, et al.Roles of focal adhesion proteins in skeleton and diseases[J]. Acta Pharm Sin B, 2023, 13(3): 998-1013. [28] Chen Z, Zou Y, Lv Y.Dynamic-stiffening collagen-coated substrate enhances osteogenic differentiation of mesenchymal stem cells through integrin α2β1[J]. Biomater Sci, 2023, 11(13): 4700-4712. [29] Guo Y, Ao Y, Ye C, et al.Nanotopographic micro-nano forces finely tune the conformation of macrophage mechanosensitive membrane protein integrin β2 to manipulate inflammatory responses[J]. Nano Res, 2023: 1-15. [30] Yang Y, Lin Y, Xu R, et al.Micro/nanostructured topography on titanium orchestrates dendritic cell adhesion and activation [31] Hu D, Li T, Bian H, et al.Silk films with distinct surface topography modulate plasma membrane curvature to polarize macrophages[J]. Mater Today Bio, 2024, 28: 101193. [32] Liu H, Wu Q, Liu S, et al.The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction[J]. Biomaterials, 2024, 304: 122406. [33] Bouissou A, Proag A, Bourg N, et al.Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring[J]. ACS Nano, 2017, 11(4): 4028-4040. [34] Miron RJ, Bohner M, Zhang Y, et al.Osteoinduction and osteoimmunology: emerging concepts[J]. Periodontol 2000, 2024, 94(1): 9-26. [35] Gou Y, Qi K, Wei Y, et al.Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair[J]. Nano TransMed, 2024, 3: 100033. [36] Liu X, Hou W, He L, et al.AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation[J]. Colloids Surf B Biointerfaces, 2019, 182: 110332. [37] Tyrina E, Yakubets D, Markina E, et al.Hippo signaling pathway involvement in osteopotential regulation of murine bone marrow cells under simulated microgravity[J]. Cells, 2024, 13(22): 1921. [38] Wei Q, Holle A, Li J, et al.BMP-2 signaling and mechanotransduction synergize to drive osteogenic differentiation [39] Pan JX, Xiong L, Zhao K, et al.YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling[J]. Bone Res, 2018, 6: 18. [40] Dupont S, Morsut L, Aragona M, et al.Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179-183. [41] Mao Y, Wickström SA.Mechanical state transitions in the regulation of tissue form and function[J]. Nat Rev Mol Cell Biol, 2024, 25(8): 654-670. [42] Wang H, Yu H, Huang T, et al.Hippo-YAP/TAZ signaling in osteogenesis and macrophage polarization: therapeutic implications in bone defect repair[J]. Genes Dis, 2023, 10(6): 2528-2539. [43] Li L, Yang S, Xu L, et al.Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin[J]. Acta Biomater, 2019, 96: 674-685. [44] Mei F, Guo Y, Wang Y, et al.Matrix stiffness regulates macrophage polarisation [45] Xiao B.Mechanisms of mechanotransduction and physiological roles of PIEZO channels[J]. Nat Rev Mol Cell Biol, 2024, 25(11): 886-903. [46] Coste B, Mathur J, Schmidt M, et al.Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60. [47] Wang HJ, Wang Y, Mirjavadi SS, et al.Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution[J]. Nat Commun, 2024, 15(1): 5521. [48] Yang X, Lin C, Chen X, et al.Structure deformation and curvature sensing of PIEZO1 in lipid membranes[J]. Nature, 2022, 604(7905): 377-383. [49] Atcha H, Jairaman A, Holt JR, et al.Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J]. Nat Commun, 2021, 12(1): 3256. [50] Yao H, Tang L, Wang D, et al.F-actin microfilaments affect the LIPUS-promoted osteogenic differentiation of BMSCs through TRPM7[J]. Biotechnol J, 2024, 19(8): e2400310. |
| [1] | Liu Tiantian, Wu Yufei, Wang Xiaoxia, Zhang Ruibin, Xun Zemin, Zhang Hui. The impact of enhanced recovery after surgery measures on postoperative recovery quality in patients after orthognathic surgery [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(6): 578-585. |
| [2] | Luo Quanfeng. Diagnosis and treatment of arteriole malformation in head and neck: a clinical summary of 48 cases [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(6): 608-612. |
| [3] | Jiang Meiping, Wang Zengxiang, Wu Ying, Li Ting, Huang Qian. Influencing factors of postoperative nausea and vomiting in orthognathic surgery patients: a meta-analysis [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(4): 401-405. |
| [4] | Ge Yaping, Luo Yalan, Liu Xiangzhen, Chen Jieyu, Zhang Min, She Yangyang. Stafne bone cavity: report of 2 cases and literature review [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(4): 421-424. |
| [5] | Hu Lingling, Sun Yingjia, Jiang Peiling, Xie Zhijian. Exploration on construction of remote medical model for the diagnosis and treatment of dento-maxillofacial deformities [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(3): 209-214. |
| [6] | Maidina Imam, Zhou Yuchuan, Muzafar Muhetar, Gong Zhongcheng. Study of Piezo1 expression in venous malformation tissues and HUVECs [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(3): 221-227. |
| [7] | Niu Lingxiao, Dang Qingqing, Han Bing. Progress in anatomy and clinical applications of buccal fat pad [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(3): 302-306. |
| [8] | Zhu Huihui, Xin Hao, Li Keyan, Chen Xinwei, Ren Zhenhu. Supermicrosurgical vascularized free lip composite flap for the reconstruction of postoperative defects following lip cancer surgery: a case report [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(3): 307-309. |
| [9] | Fan Hao, Dong Xiang. Acute pulmonary edema following local administration of epinephrine in pediatric cleft palate repair surgery: a case report [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(3): 310-312. |
| [10] | WU Jia-qing, SHEN Ai-li, QIAN Yi-feng, LIU Jia-qiang. Analysis of sagittal jaw movements and pharyngeal airway changes in skeletal Class Ⅱ patients following bimaxillary surgery [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(2): 129-136. |
| [11] | SONG Xin-li, XU Lei, LI Min, LI Da-lu. Three-dimensional changes and related factors of proximal bone segments after BSSRO in patients with bony Class Ⅲ malocclusion and mandibular deviation [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(2): 137-144. |
| [12] | SONG Ming-yang, WANG Li-chan, WANG Yu-xin, ZHANG Qian, XIA Cheng-wan, WANG Si-qi, YANG Xu-dong. Clinical study on the effect of bimaxillary surgery on disc-condyle relationship of temporomandibular joint in patients with skeletal Class Ⅲ malocclusion [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(1): 6-12. |
| [13] | YANG Yi-fan, ZHANG Yi-bo, LIU Xue, XU Li-ming, ZIERDA Ayiding, LING Bin. Application of a new digital fibular transfer and fixation guide plate in the reconstruction of mandibular defects [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(1): 40-47. |
| [14] | TAN Hui-lin, QU Bin-bin, LEI Rong-chang, CHAI An. A case of high condylectomy combined with orthognathic surgery for the treatment of unilateral condylar hypertrophy [J]. China Journal of Oral and Maxillofacial Surgery, 2025, 23(1): 101-104. |
| [15] | LI Xiao-gao, DENG Hua, HE Qian-ting. Application of forearm fusiform flap in repairing medium and small defects in oral and maxillofacial region [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(5): 473-477. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||