[1] Khademhosseini A, Langer R.Microengineered hydrogels for tissue engineering[J]. Biomaterials, 2007, 28(34): 5087-5092. [2] Griffon DJ, Sedighi MR, Schaeffer DV, et al.Chitosan scaffolds: interconnective pore size and cartilage engineering[J]. Acta Biomater, 2006, 2(3): 313-320. [3] Xue W, Lee D, Kong Y, et al.A facile strategy for the fabrication of cell-laden porous alginate hydrogels based on two-phase aqueous emulsions[J]. Adv Funct Mater, 2023, 33(35): 2214129. [4] Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271. [5] Gerecht S, Townsend SA, Pressler H, et al.A porous photocurable elastomer for cell encapsulation and culture[J]. Biomaterials, 2007, 28(32): 4826-4835. [6] Hutmacher DW.Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21(24): 2529-2543. [7] Lu M, Liu F, Tan R, et al.Phase-separation-induced porous hydrogels from amphiphilic triblock copolymer with high permeability and mechanical strength[J]. Chem Mater, 2022, 34(24): 10995-11006. [8] Sharma P, Kumar P, Sharma R, et al.Tissue engineering; current status & futuristic scope[J]. J Med Life, 2019, 12(3): 225-229. [9] Olson JL, Atala A, Yoo JJ.Tissue engineering: current strategies and future directions[J]. Chonnam Med J, 2011, 47(1): 1-13. [10] Wang Y, Liu M, Zhang W, et al. Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine[J]. Burns Trauma, 2024, 12: tkae039. [11] Sun X, Altalhi W, Nunes SS.Vascularization strategies of engineered tissues and their application in cardiac regeneration[J]. Adv Drug Deliv Rev, 2016, 96: 183-194. [12] Wang Y, Kankala RK, Ou C, et al.Advances in hydrogel-based vascularized tissues for tissue repair and drug screening[J]. Bioact Mater, 2022, 9: 198-220. [13] Reddy MSB, Ponnamma D, Choudhary R, et al.A Comparative review of natural and synthetic biopolymer composite scaffolds[J]. Polymers (Basel), 2021, 13(7): 1105. [14] Ahmad Z, Salman S, Khan SA, et al.Versatility of hydrogels: from synthetic strategies, classification, and properties to biomedical applications[J]. Gels, 2022, 8(3): 167. [15] Ying GL, Jiang N, Maharjan S, et al.Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels[J]. Adv Mater, 2018, 30(50): e1805460. [16] Li Y, Rodrigues J, Tomás H.Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications[J]. Chem Soc Rev, 2012, 41(6): 2193-2221. [17] Li Y, Yang HY, Lee D S.Biodegradable and injectable hydrogels in biomedical applications[J]. Biomacromolecules, 2022, 23(3): 609-618. [18] Alonso JM, Andrade Del Olmo J, Perez Gonzalez R, et al. Injectable hydrogels: from laboratory to industrialization[J]. Polymers (Basel), 2021, 13(4): 650. [19] Ho TC, Chang CC, Chan HP, et al.Hydrogels: properties and applications in biomedicine[J]. Molecules, 2022, 27(9): 2902. [20] Zhou H, Yu K, Jiang H, et al.A three-in-one strategy: injectable biomimetic porous hydrogels for accelerating bone regeneration via shape-adaptable scaffolds, controllable magnesium ion release, and enhanced osteogenic differentiation[J]. Biomacromolecules, 2021, 22(11): 4552-4568. [21] Hendow EK, Iacoviello F, Casajuana Ester M, et al.Hierarchically structured biodegradable microspheres promote therapeutic angiogenesis[J]. Adv Healthc Mater, 2024, 13(31): e2401832. [22] Lavergne M, Derkaoui M, Delmau C, et al.Porous polysaccharide-based scaffolds for human endothelial progenitor cells[J]. Macromol Biosci, 2012, 12(7): 901-910. [23] Ma Y, Wang X, Su T, et al.Recent advances in macroporous hydrogels for cell behavior and tissue engineering[J]. Gels, 2022, 8(10): 606. [24] Thang NH, Chien TB, Cuong DX.Polymer-based hydrogels applied in drug delivery: an overview[J]. Gels, 2023, 9(7): 523. [25] Li J, Mooney DJ.Designing hydrogels for controlled drug delivery[J]. Nat Rev Mater, 2016, 1(12): 16071. |