China Journal of Oral and Maxillofacial Surgery ›› 2024, Vol. 22 ›› Issue (4): 329-338.doi: 10.19438/j.cjoms.2024.04.003
• Original Articles • Previous Articles Next Articles
ZHAO Hui1, SHU Xin2, ZHANG Fan1, REN Wei-wei1, LIU Jiao1, ZHU Zhu1
Received:
2023-10-12
Revised:
2023-12-13
Online:
2024-07-20
Published:
2024-08-07
CLC Number:
ZHAO Hui, SHU Xin, ZHANG Fan, REN Wei-wei, LIU Jiao, ZHU Zhu. Comprehensive bioinformatics analysis combined with experimental validation to screen biomarkers for head and neck squamous cell carcinoma[J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 329-338.
[1] Sung H, Ferlay J, Siegel RL, et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Fuller CD, Wang SJ, Thomas Jr CR, et al.Conditional survival in head and neck squamous cell carcinoma: results from the SEER dataset 1973-1998[J]. Cancer, 2007, 109(7): 1331-1343. [3] Wood DE, White JR, Georgiadis A, et al. A machine learning approach for somatic mutation discovery[J]. Sci Transl Med, 2018, 10(457): eaar7939. [4] Cheng AJ, You GR, Lee CJ, et al.Systemic investigation identifying salivary miR-196b as a promising biomarker for early detection of head-neck cancer and oral precancer lesions[J]. Diagnostics(Basel), 2021, 11(8): 1411-1423. [5] Zhang R, Gao Y.Identification of NUTF2 as a candidate diagnostic and prognostic biomarker associated with immune infiltration in head and neck squamous cell carcinoma[J]. Onco Targets Ther, 2021, 14: 5455-5467. [6] Ghosh RD, Majumder SG.Circulating Long non-coding RNAs could be the Potential prognostic biomarker for liquid biopsy for the clinical management of oral squamous cell carcinoma[J]. Cancers(Basel), 2022, 14(22): 5590. [7] Walther C, Tayebwa J, Lilljebjörn H, et al.A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma[J]. J Pathol, 2014, 231(5): 534-540. [8] Chen SJ, Li YQ, Zhu YH, et al.SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer[J]. J Oncol, 2022: 2647825. [9] Liang ZR, Pan RL, Meng X, et al.Transcriptome study of oleanolic acid in the inhibition of breast tumor growth based on high-throughput sequencing[J]. Aging (Albany NY), 2021, 13(19): 22883-22897. [10] Seker F, Cingoz A, Sur-Erdem I, et al.Identification of SERPINE1 as a regulator of glioblastoma cell dispersal with transcriptome profiling[J]. Cancers(Basel), 2019, 11(11): 1651-1671. [11] Hanekom GS, Stubbings HM, Kidson SH.The active fraction of plasmatic plasminogen activator inhibitor type 1 as a possible indicator of increased risk for metastatic melanoma[J]. Cancer Detect Prev, 2002, 26(1): 50-59. [12] Mekkawy AH, Pourgholami MH, Morris DL.Involvement of urokinase-type plasminogen activator system in cancer: an overview[J]. Med Res Rev, 2014, 34(5): 918-956. [13] Novak CM, Horst EN, Taylor CC, et al.Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor[J]. Biotechnol Bioeng, 2019, 116(11): 3084-3097. [14] Chen GJ, Sun JW, Xie MR, et al.PLAU promotes cell proliferation and epithelial-mesenchymal transition in head and neck squamous cell carcinoma[J]. Front Genet, 2021, 12: 651882. [15] Montuori N, Cosimato V, Rinaldi L, et al.uPAR regulates pericellular proteolysis through a mechanism involving integrins and fMLF-receptors[J]. Thromb Haemost, 2013, 109(2):309-318. [16] Tang CH, Wei Y.The urokinase receptor and integrins in cancer progression[J]. Cell Mol Life Sci, 2008, 65(12): 1916-1932. [17] Madsen DH, Engelholm L, Ingvarsen S, et al.Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/endo180, cooperate in fibroblast-mediated collagen degradation[J]. J Biol Chem, 2007, 282(37): 27037-27045. [18] Smith HW, Marshall CJ.Regulation of cell signalling by uPAR[J]. Nat Rev Mol Cell Biol, 2010, 11(1): 23-36. [19] Jacobsen B, Ploug M.The urokinase receptor and its structural homologue C4.4A in human cancer: expression, prognosis and pharmacological inhibition[J]. Curr Med Chem, 2008, 15(25): 2559-2573. [20] Béné MC, Castoldi G, Knapp W, et al.CD87(urokinase-type plasminogen activator receptor), function and pathology in hematological disorders: a review[J]. Leukemia, 2004, 18(3): 394-400. [21] Astedt B, Lecander I, Brodin T, et al.Purification of a specific placental plasminogen activator inhibitor by monoclonal antibody and its complex formation with plasminogen activator[J]. Thromb Haemost, 1985, 53(1): 122-125. [22] Kruithof EK, Baker MS, Bunn CL.Biological and clinical aspects of plasminogen activator inhibitor type 2[J]. Blood, 1995, 86(11): 4007-4024. [23] Schroder WA, Le TT, Gardner J, et al.SerpinB2 deficiency in mice reduces bleeding times [24] Sen P, Helmke A, Liao CM, et al.SerpinB2 regulates immune response in kidney injury and aging[J]. J Am Soc Nephrol, 2020, 31(5): 983-995. [25] Elsafadi M, Shinwari T, Al-Malki S, et al.Convergence of TGFbeta and BMP signaling in regulating human bone marrow stromal cell differentiation[J]. Sci Rep, 2019, 9: 4977. [26] Nie X, Wei J, Hao Y, et al.Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology approach[J]. Int J Mol Sci, 2019, 20(16): 4037-4055. [27] Champelovier P, Boucard N, Levacher G, et al.Plasminogen-and colony-stimulating factor-1-associated markers in bladder carcinoma: diagnostic value of urokinase plasminogen activator receptor and plasminogen activator inhibitor type-2 using immunocytochemical analysis[J]. Urol Res, 2022, 30(5): 301-309. [28] Nordengren J, Lidebring MF, Bendahl PO, et al.High tumor tissue concentration of plasminogen activator inhibitor 2 (PAI-2) is an independent marker for shorter progression-free survival in patients with early stage endometrial cancer[J]. Int J Cancer, 2021, 97(3): 379-385. [29] Hanahan D, Coussens LM.Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322. [30] Balermpas P, Rödel F, Weiss C, et al.Tumor-infiltrating lymphocytes favor the response to chemoradiotherapy of head and neck cancer[J]. Oncoimmunology, 2014, 3(1): e27403. [31] Eckert AW, Wickenhauser C, Salins PC, et al.Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma[J]. J Transl Med, 2016, 14(1): 85-98. [32] Grimm M, Feyen O, Coy JF, et al.Analysis of circulating CD14+/CD16+ monocyte-derived macrophages (MDMs) in the peripheral blood of patients with oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radio, 2016, 121(3): 301-306. [33] Iida M, Takayama E, Naganawa K, et al.Increase of peripheral blood CD57+ T-cells in patients with oral squamous cell carcinoma[J]. Anticancer Res, 2014, 34(10): 5729-5734. [34] Bankur R, Rodrigues C, Anjaly D, et al.Quantitative analysis of tumor-associated tissue eosinophilia in different histological grades of oral squamous cell carcinoma[J]. Indian J Dent Res, 2016, 27(5): 463-467. [35] De Paz D, Chang KP, Kao HK, et al.Clinical implications of tumor-associated tissue eosinophilia in tongue squamous cell carcinoma[J]. Laryngoscope, 2019, 129(5): 1123-1129. [36] Hu, C, Zhang Y, Wu, C, et al. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges[J]. Cell Death Discov, 2023, 9(1): 124-133. [37] Sakamoto H, Koma YI, Higashino N, et al.PAI-1 derived from cancer-associated fibroblasts in esophageal squamous cell carcinoma promotes the invasion of cancer cells and the migration of macrophages[J]. Lab Invest, 2021, 101(3): 353-368. [38] Ciavarella, S, Laurenzana, A, De Summa, S, et al. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression[J]. BMC Cancer, 2017, 17(1):215-226. |
[1] | GUO Yi-fei, ZHANG Yong-hong, REN Zhen-hu. Diagnosis and treatment of head and neck sarcoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 404-408. |
[2] | CHEN Yin-yu, CHEN Lin, XU Feng, ZOU Zi-chuan, GE Liang-yu, MENG Jian. Research progress of adoptive T cell therapy in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(2): 192-197. |
[3] | LIU Heng, LI Yong-di, YIN Xin-hai, DUAN Xiao-feng. Expression of ferritin heavy chain 1 in head and neck squamous cell carcinoma and its effect on proliferation, migration and invasion of oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 529-537. |
[4] | ZHAI Pei-song, TONG Tong, LIU Chun, MA Hai-long, ZHANG Jian-jun. The impact of mitochondrial topoisomerase I expression in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(5): 439-445. |
[5] | ZENG Hui, JIANG Hua-xiang, HU Yan-chang, YANG Feng-rui, WANG Jun. Screening of hub genes in tongue squamous cell carcinoma based on bioinformatics analysis [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(5): 452-460. |
[6] | LIU Yu, CHEN Yu-ling, LIN Yun-tao, YANG Hong-yu. The role of MAP7D3 in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 352-359. |
[7] | HAN Lin-zi, ZHOU Jian-hua, ZHAO Qian, DONG Lei, CHEN Zheng-gang, QIU Jian-zhong, YUAN Rong-tao. The regulation and mechanism of cancer-associated fibroblasts on tumor-infiltrating immune cells in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(2): 119-124. |
[8] | LI Xue-er, WANG Zheng-ye, TUERDI Maimaitituxun. Identification of HPV status in head and neck squamous cell carcinoma patients based on radiomics: diagnostic meta-analysis [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(1): 69-74. |
[9] | YANG Hui-li, WANG Yu-fan, WANG Feng, SHEN Yue-hong, YANG Hong-yu. Comprehensive co-expression analysis revealed NLRP1 as a prognostic immune-associated gene in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(5): 429-436. |
[10] | WANG Chong, KANG Xin-dan, WANG Rui, WU Ya-ping, SUN Lu-lu, ZHANG Zhi-yuan, SUN Shu-yang. Establishment and identification of patient-derived organoid model in head and neck squamous carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(4): 328-333. |
[11] | HUANG Jin-yun, ZHANG Xin-yi, JU Hou-yu, JI Hong-hai, REN Guo-xin. Correlation between oral microbial homeostasis and cisplatin sensitivity in patients with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(6): 500-505. |
[12] | HUANG Jin-yun, ZHANG Xin-yi, JU Hou-yu, JI Hong-hai, REN Guo-xin. Correlation between oral microbial homeostasis and cisplatin sensitivity in patients with oral squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(6): 506-510. |
[13] | HE You-ya, ZHANG Yu, DAI Zhen-lin, LIN Cheng-zhong, CAO Wei, JI Tong. Differential expression and bioinformation of lncRNA CASC15 in ameloblastoma [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(5): 411-416. |
[14] | CHEN Lan, ZHANG Zhi-yuan, SUN Shu-yang. Synthetic lethality: towards the targeted strategies of head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2021, 19(3): 278-283. |
[15] | CHANG Han-yue, MA Hai-long, YANG Xi, ZHANG Zhi-yuan. Expression and significance of pyruvate kinase M2 and CD276 in head and neck squamous cell carcinoma [J]. China Journal of Oral and Maxillofacial Surgery, 2020, 18(4): 297-301. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||