[1] Nishimura R, Hata K, Nakamura E, et al.Transcriptional network systems in cartilage development and disease[J]. Histochem Cell Biol, 2018, 149(4): 353-363. [2] Hata K, Takahata Y, Murakami T, et al.Transcriptional network controlling endochondral ossification[J]. J Bone Metab, 2017, 24(2): 75-82. [3] Li J, Dong S.The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation[J]. Stem Cells int, 2016, 2016: 2470351. [4] Xie Y, Luo F, Xu W, et al.FGFR3 deficient mice have accelerated fracture repair[J]. Int J Biol Sci, 2017, 13(8): 1029-1037. [5] Ellman MB, Yan D, Ahmadinia K, et al.Fibroblast growth factor control of cartilage homeostasis[J]. J Cell Biochem, 2013, 114(4): 735-742. [6] Charoenlarp P, Rajendran AK, Iseki S.Role of fibroblast growth factors in bone regeneration[J]. Inflamm Regen, 2017, 37: 10. [7] Hung IH, Yu K, Lavine KJ, et al.FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod[J]. Dev Biol, 2007, 307(2): 300-313. [8] Dai J, Wang J, Lu J, et al.The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage[J]. Biomaterials, 2012, 33(31): 7699-7711. [9] Correa D, Somoza RA, Lin P, et al.Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation[J]. Osteoarthritis Cartilage, 2015, 23(3): 443-453. [10] 易善勇, 杨晶, 官丽莉, 等. 成纤维细胞生长因子9(FGF9)的研究进展[J]. 中国生物工程杂志, 2015, 35(7): 94-101. [11] Ornitz DM, Itoh N.The fibroblast growth factor signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(3): 215-266. [12] Karuppaiah K, Yu K, Lim J, et al.FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth[J]. Development, 2016, 143(10): 1811-1822. [13] Sauer B, Henderson N.Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome[J]. Nucleic Acids Res, 1989, 17(1): 147-161. [14] Oh-McGinnis R, Jones MJ, Lefebvre L. Applications of the site-specific recombinase Cre to the study of genomic imprinting[J]. Brief Funct Genomics, 2010, 9(4): 281-293. [15] McMinn JE, Liu SM, Dragatsis I, et al. An allelic series for the leptin receptor gene generated by CRE and FLP recombinase[J]. Mamm Genome, 2004, 15(9): 677-685. [16] Rajewsky K, Gu H, Kühn R, et al.Conditional gene targeting[J]. J Clin Invest, 1996, 98(3): 600-603. [17] Dallas SL, Xie Y, Shiflett LA, et al.Mouse cre models for the study of bone diseases[J]. Curr Osteoporos Rep, 2018, 16(4): 466-477. [18] Colvin JS, White AC, Pratt SJ, et al.Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme[J]. Development, 2001, 128(11): 2095-2106. [19] Fukushige S, Sauer B.Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells[J]. Proc Natl Acad Sci USA, 1992, 89(17): 7905-7909. [20] Newton PT, Xie M, Medvedeva EV, et al.Activation of mTORC1 in chondrocytes does not affect proliferation or differentiation, but causes the resting zone of the growth plate to become disordered[J]. Bone Rep, 2018, 8: 64-71. [21] Hung IH, Schoenwolf GC, Lewandoski M, et al.A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development[J]. Dev Biol, 2016, 411(1): 72-84. [22] Tang L, Wu X, Zhang H, et al.A point mutation in Fgf9 impedes joint interzone formation leading to multiple synostoses syndrome[J]. Hum Mol Genet, 2017, 26(7): 1280-1293. [23] Garofalo S, Kliger-Spatz M, Cooke JL, et al.Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice[J]. J Bone Miner Res, 1999, 14(11): 1909-1915. [24] Fish JL.Evolvability of the vertebrate craniofacial skeleton[J]. Semin Cell Dev Biol, 2017, 91(1): 13-22. [25] Runyan CM, Gabrick KS.Biology of bone formation, fracture healing, and distraction osteogenesis[J]. J Craniofac Surg, 2017, 28(5): 1380-1389. [26] Ahmed MK, Ye X, Taub PJ.Review of the genetic basis of jaw malformations[J]. J Pediatr Genet, 2016, 5(4): 209-219. [27] Sharma S, Zhu J.Immunologic applications of conditional gene modification technology in the mouse[J]. Curr Protoc Immunol, 2014, 105: 10. |