[1] Sciubba JJ, Goldenberg D. Oral complications of radiotherapy [J]. Lancet Oncol, 2006, 7 (2):175-183. [2] Lyonsa A, Ghazalib N. Osteoradionecrosis of the jaws: current understanding of its pathophysiology and treatment [J]. Br J Oral Maxillofac Surg, 2008, 46(8): 653-660. [3] Chrcanovic BR, Reher P, Sousa AA, et al. Osteoradionecrosis of the jaws-a current overview-part1: physiopathology and risk and predisposing factors [J]. J Oral Maxillofac Surg, 2010, 14(1): 3-16. [4] Meyer I. Infectious diseases of the jaws[J]. J Oral Surg,1970,28(1): 17-26. [5] Marx RE. Osteoradionecrosis: a new concept of its pathophyrsiology[J]. J Oral Maxillofac Surg,1983, 41(5): 283-288. [6] Rudolph R, Tripuraneni P, Koziol JA, et al. Normal transcutaneous oxygen pressure in skin after radiation therapy for cancer [J]. Cancer, 1994, 74(11): 3063-3070. [7] Annane D, Depondt J, Aubert P, et al. Hyperbaric oxygen therapy for radionecrosis of the jaw: a randomized, placebo-controlled double-blind trial from the ORN96 study group [J]. J Clin Onco, 2004, 22(24): 4893-4900. [8] Delanian S, Lefaix JL. The radiation-induced fibroatropic process: therapeutic perspective via the antioxidant pathway [J]. Radiother Oncol, 2004, 73(2): 119-131. [9] Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis base on the amino acid sequence of the amino-terminal tryptic peptide [J]. J Mol Biol, 1987, 126(4): 783-802. [10] Wynn TA. Cellular and molecular mechanisms of fibrosis [J]. J Pathol, 2008, 214(2): 199-210. [11] Watsky MA, Weber KT, Sun Y, et al. New insights into the mechanism of fibroblast to myofibroblast transformation and associated pathologies [J]. Int Rev Cell Mol Biol, 2010, 282: 165-192. [12] Kis K, Liu X, Hagood JS. Myofibroblast differentiation and survival in fibrotic disease[J]. Expert Rev Mol Med,2011,13: e27. [13] Lee CH, Shah B, Moioli EK, et al. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cell and defines connective tissue healing in a rodent injury moddl [J]. J Clin Invest, 2010, 120(9): 3340-3349. [14] Hinz B, Phan SH, Thannickal VJ, et al. The myofibroblast: one function, multiple origins [J]. Am J Pathol, 2007, 170(6): 1807-1816. [15] Horowitz JC, Rogers DS, Sharma V, et al. Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis resistant phenotype to myofibroblasts [J]. Cell Signal, 2007, 19(4): 761-771. [16] Yin Z, Watsky MA. Chloride channel activity in human lung fibroblasts and myofibroblasts [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(6): L1110-L1116. [17] Cho HJ, Yoo J. Rho activation is required for transforming growth factor-β-induced epithelial-mesenchymal transition in lens epithelial cells [J]. Cell Biol Int, 2007, 31(10): 1225-1230. [18] Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-β signal transduction [J]. J Cell Sci, 2001, 114(Pt 24): 4359-4369. [19] Nakao A, Afrakhte M, Morén A, et al. Identification of Smad7, a TGF-beta inducible antagonist of TGF-beta signaling [J]. Nature, 1997, 389(6651): 631-635. [20] Sobral LM, Montan PF, Zecchin KG, et al. Smad7 blocks transforming growth factor-betal-induced gingival fibroblast-myofibroblast transition via inhibitory regulation of Smad2 and connective tissue growth factor [J]. J Periodontol, 2011, 82(4): 642-651. [21] Marx RE, Tursun R. Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradionecrosis: a blinded histopathologic comparison and its implications for the mechanism of each disease [J]. Int J Oral maxillofac Surg, 2012, 41(3): 283-289. [22] Forbes SJ, Russo FP, Rey V, et al. A significant proportion of fibroblasts are of bone marrow origin in human liver fibrosis [J]. Gastroenterology, 2004, 126(4): 955-963. [23] Zhuang Q, Zhang Z, Fu H, et al. Does radiation-induced fibrosis have an important role in pathophysiology of the osteoradionecrosis of jaw? [J]. Med Hypotheses, 2011, 77(1): 63-65. [24] Tian L, He LS, Soni B, et al. Myofibroblasts and their resistance to apoptosis: a possible mechanism of osteoradionecrosis [J]. Clin Cosmet Investig Dent, 2012, 4: 21-27. [25] Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis [J]. J Mol Med (Berl), 2004, 82(3): 175-181. [26] Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial- mesenchymal transition (End-MET) in the pathogenesis of fibrotic disorders [J]. Am J Pathol, 2011, 179(3): 1074-1080. [27] Schrimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte [J]. Curr Opin Nephrol Hypertens, 2011, 20(3): 297-305. [28] 付洪海, 周咏, 张志愿, 等. TGF-β1过表达介导的放疗诱导成纤维细胞向肌成纤维细胞分化的体外研究 [J]. 中国口腔颌面外科杂志, 2012, 10(4): 266-270. [29] Gervaz P, Morel P, Vozenin-Brotons MC. Molecular aspects of intestinal radiation-induced fibrosis[J]. Curr Mol Med,2009,9(3): 273-280. [30] Wallach-Dayan SB, Golan-Gerstl R, Breuer R. Evasion of myofibroblasts from immune surveillance: a mechanism for tissue fibrosis [J]. Proc Natl Acad Sci USA, 2007, 104(51): 20460-20465. [31] Rishi L, Gahlot S, Kathania M, et al. Pentoxifylline induces apoptosis in vitro in cutaneous T cell lymphoma (HuT-78) and enhances FasL mediated killing killing by upregulating Fas expression [J]. Biochem Pharmacol, 2009, 77(1): 30-45. [32] Delanian S, Lefaix JL. Complete healing of severe osteoradionecrosis with treatment combining pentoxifylline, tocopherol and clodronate [J]. Br J Radiol, 2002, 75(839): 467-469. [33] Xu J, Zheng Z, Fang D, et al. Early-stage pathogenic sequence of jaw osteoradionecrosis in vivo [J]. J Dent Res, 2012, 91(7): 702-708. [34] Anan A, Baskin-Bey ES, Bronk SF, et al. Proteasome inhibition induces hepatic stellate cell apoptosis [J]. Hepatology, 2006, 43(2): 335-344. [35] Garneau-Tsodikova S, Thannickal VJ. Protein kinase inhibitors in the treatment of pulmonary fibrosis [J]. Curr Med Chem, 2008, 15(25): 2632-2640. [36] Wang Q, Wang Y, Hyde DM, et al. Reduction of bleomycin induced lung fibrosis by transforming growth factor β soluble receptor in hamsters [J]. Thorax, 1999, 54(9): 805-812. |