[1] Harding C, Heuser J, Stahl P.Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding[J]. Eur J Cell Biol, 1984, 35(2): 256-263. [2] McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer[J]. Mol Cancer, 2019, 18(1): 52-62. [3] Tan JL, Lau SN, Leaw B, et al.Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair[J]. Stem Cells Transl Med, 2018, 7(2): 180-196. [4] Brown M, Johnson LA, Leone DA, et al.Lymphatic exosomes promote dendritic cell migration along guidance cues[J]. J Cell Biol, 2018, 217(6): 2205-2221. [5] D'Incà F, Pucillo CE. Exosomes: tiny clues for mast cell communication[J]. Front Immunol, 2015, 6: 73-74. [6] Raposo G, Stoorvogel W.Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. [7] Hammond SM.An overview of microRNAs[J]. Adv Drug Deliv Rev, 2015, 87: 3-14. [8] Filipowicz W, Bhattacharyya SN, Sonenberg N.Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?[J]. Nat Rev Genet, 2008, 9(2): 102-114. [9] Valadi H, Ekstr?m K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659. [10] Geng T, Song ZY, Xing JX, et al.Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway[J]. Int J Nanomedicine, 2020, 15: 2647-2658. [11] Zhu M, Zhang N, He S, et al.Exosomal miR-106a derived from gastric cancer promotes peritoneal metastasis via direct regulation of Smad7[J]. Cell Cycle, 2020, 19(10): 1200-1221. [12] Ge Q, Zhou Y, Lu J, et al.miRNA in plasma exosome is stable under different storage conditions[J]. Molecules, 2014, 19(2): 1568-1575. [13] Keerthikumar S, Chisanga D, Ariyaratne D, et al.ExoCarta: a web-based compendium of exosomal cargo[J]. J Mol Biol, 2016, 428(4): 688-692. [14] Bray F, Ferlay J, Soerjomataram I, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [15] Rivera C.Essentials of oral cancer[J]. Int J Clin Exp Pathol, 2015, 8(9): 11884-11894. [16] Ketabat F, Pundir M, Mohabatpour F, et al.Controlled drug delivery systems for oral cancer treatment-current status and future perspectives[J]. Pharmaceutics, 2019, 11(7): 302-330. [17] Zhang Y, Weinberg RA.Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. [18] Kumar A, Deep G.Hypoxia in tumor microenvironment regulates exosome biogenesis: molecular mechanisms and translational opportunities[J]. Cancer Lett, 2020, 479: 23-30. [19] Li L, Li C, Wang S, et al.Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype[J]. Cancer Res, 2016, 76(7): 1770-1780. [20] Hinshaw DC, Shevde LA.The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566. [21] Tan S, Xia L, Yi P, et al.Exosomal miRNAs in tumor microenvironment[J]. J Exp Clin Cancer Res, 2020, 39(1): 67-81. [22] Weber M, Wehrhan F, Baran C, et al.Malignant transformation of oral leukoplakia is associated with macrophage polarization[J]. J Transl Med, 2020, 18(1): 11-28. [23] Weber M, Iliopoulos C, Moebius P, et al.Prognostic significance of macrophage polarization in early stage oral squamous cell carcinomas[J]. Oral Oncol, 2016, 52: 75-84. [24] Cai J, Qiao B, Gao N, et al.Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p[J]. Am J Physiol Cell Physiol, 2019, 316(5): C731-C740. [25] Li YY, Tao YW, Gao S, et al.Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p[J]. EBioMedicine, 2018, 36: 209-220. [26] He L, Ping F, Fan Z, et al.Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening[J]. Biomed Pharmacother, 2020, 121: 109553. [27] Gai C, Camussi F, Broccoletti R, et al.Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma[J]. BMC Cancer, 2018, 18(1): 439-449. [28] Hadavand M, Hasni S.Exosomal biomarkers in oral diseases[J]. Oral Dis, 2019, 25(1): 10-15. [29] van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; present concepts of management[J]. Oral Oncol, 2010, 46(6): 423-425. [30] Byun JS, Hong SH, Choi JK, et al.Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients[J]. Oral Dis, 2015, 21(8): 987-993. [31] Ding M, Wang X, Wang C, et al.Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients[J]. J Transl Med, 2017,15(1):133-144. [32] Voulgarelis M, Tzioufas AG.Pathogenetic mechanisms in the initiation and perpetuation of Sjogren's syndrome[J]. Nat Rev Rheumatol, 2010, 6(9): 529-537. [33] Gallo A, Jang SI, Ong HL, et al.Targeting the Ca2+ sensor STIM1 by exosomal transfer of ebv-miR-BART13-3p is associated with Sjögren's syndrome[J]. EBioMedicine, 2016, 10: 216-226. [34] Cortes-Troncoso J, Jang SI, Perez P, et al.T cell exosome-derived miR-142-3p impairs glandular cell function in Sjogren's syndrome[J]. JCI Insight, 2020, 5(9): e133497. [35] Choi JW, Kim SC, Hong SH, et al.Secretable small RNAs via outer membrane vesicles in periodontal pathogens[J]. J Dent Res, 2017, 96(4): 458-466. [36] Atsawasuwan P, Lazari P, Chen Y, et al.Secretory microRNA-29 expression in gingival crevicular fluid during orthodontic tooth movement[J]. PLoS One, 2018, 13(3): e194238. [37] Wang M, Yuan Y, Wang Z, et al.Prevalence of orofacial clefts among live births in China: a systematic review and meta-analysis[J]. Birth Defects Res, 2017, 109(13): 1011-1019. [38] Gajera M, Desai N, Suzuki A, et al.MicroRNA-655-3p and microRNA-497-5p inhibit cell proliferation in cultured human lip cells through the regulation of genes related to human cleft lip[J]. BMC Med Genomics, 2019, 12(1): 70-87. [39] Fu C, Lou S, Zhu G, et al.Identification of new miRNA-mRNA networks in the development of non-syndromic cleft lip with or without cleft palate[J]. Front Cell Dev Biol, 2021, 9: 631057. [40] 王俊伟, 杨学财, 李玮, 等. 非综合征性唇腭裂外周血血浆外泌体源miRNA的表达研究[J]. 现代口腔医学杂志, 2019, 33(5): 261-265. |