[1] Xing Y, Zhao S, Zhou BP, et al.Metabolic reprogramming of the tumour microenvironment[J]. FEBS J, 2015, 282(20): 3892-3898. [2] Deberardinis RJ, Chandel NS.Fundamentals of cancer metabolism[J]. Sci Adv, 2016, 2(5): e1600200. [3] Martinez-Outschoorn UE, Lin Z, Trimmer C, et al.Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors[J]. Cell Cycle, 2011, 10(15): 2504-2520. [4] 周美玲, 李传祝, 王琼, 等. 人口腔癌相关成纤维细胞的分离培养及鉴定[J]. 口腔生物医学, 2016, 7(2): 57-61. [5] Lisanti MP, Martinez-Outschoorn UE, Sotgia F.Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery[J]. Cell Cycle, 2013, 12(17): 2723-2732. [6] Knudsen ES, Balaji U, Freinkman E, et al.Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential[J]. Oncotarget, 2016, 7(48): 78396-78411. [7] Fiaschi T, Giannoni E, Taddei ML, et al.Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells[J]. Cell Cycle, 2013, 12(11): 1791-1801. [8] Salem AF, Whitaker-Menezes D, Lin Z, et al.Two-compartment tumor metabolism: Autophagy in the tumor microenvironment, and oxidative mitochondrial metabolism (OXPHOS) in cancer cells[J]. Cell Cycle, 2012, 11(13): 2545-2556. [9] Apicella M, Giannoni E, Fiore S, et al. Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies [J]. Cell Metab, 2018, 28(6): 848-865.e846. [10] Radhakrishnan R, Ha JH, Jayaraman M, et al.Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts[J]. Cancer Lett, 2019, 442: 464-474. [11] Yan W, Wu X, Zhou W, et al.Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol, 2018, 20(5): 597-609. [12] Zhao L, Ji G, Le X, et al.Long noncoding RNA LINC00092 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer[J]. Cancer Res, 2017, 77(6): 1369-1382. [13] Peiris-Pagès M, Sotgia F, Lisanti MP.Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells[J]. Oncotarget, 2015, 6(13): 10728-10745. [14] Martinez-Outschoorn UE, Lisanti MP, Sotgia F.Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth[J]. Semin Cancer Biol, 2014, 25: 47-60. [15] Nguyen T, Kirsch J, Nabi K, et al.Effects of carcinoma-associated fibroblasts on cancer metabolism [A]. Philadelphia: Proceedings of the American Association for Cancer Research Annual Meeting, 2018. [16] Ueno T, Utsumi J, Toi M, et al.Characteristic gene expression profiles of human fibroblasts and breast cancer cells in a newly developed bilateral coculture system[J]. Biomed Res Int, 2015, 2015: 960840. [17] Giannoni E, Taddei ML, Morandi A, et al.Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread[J]. Oncotarget, 2015, 6(27): 24061-24074. [18] Fiaschi T, Marini A, Giannoni E, et al.Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay[J]. Cancer Res, 2012, 72(19): 5130-5140. [19] Luo M, Luo Y, Mao N, et al.Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication[J]. Cell Physiol Biochem, 2018, 51(1): 315-336. [20] Capparelli C, Chiavarina B, Whitaker-Menezes D, et al.CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis[J]. Cell Cycle, 2012, 11(19): 3599-3610. [21] Shangguan C, Gan G, Zhang J, et al.Cancer-associated fibroblasts enhance tumor 18F-FDG uptake and contribute to the intratumor heterogeneity of PET-CT[J]. Theranostics, 2018, 8(5): 1376-1388. [22] Zhao H, Yang L, Baddour J, et al.Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism[J]. Elife, 2016, 5: e10250. [23] Druzhkova IN, Shirmanova MV, Lukina MM, et al.The metabolic interaction of cancer cells and fibroblasts-coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide[J]. Cell Cycle, 2016, 15(9): 1257-1266. [24] Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al.The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma[J]. Cell Cycle, 2009, 8(23): 3984-4001. [25] Dumont J.Cancer heterogeneity is incompatible with a unique cell metabolic map[J]. Eur J Cancer, 2016, 61(1): S165-S165. [26] Fiori ME, Di Franco S, Villanova L, et al.Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance[J]. Mol Cancer, 2019, 18(1): 70-86. [27] He Z, You C, Zhao D.Long non-coding RNA UCA1/miR-182/PFKFB2 axis modulates glioblastoma-associated stromal cells-mediated glycolysis and invasion of glioma cells[J]. Biochem Biophys Res Commun, 2018, 500(3): 569-576. [28] Wanandi SI, Ningsih SS, Asikin H, et al.Metabolic interplay between tumour cells and cancer-associated fibroblasts (CAFs) under hypoxia versus normoxia[J]. Malays J Med Sci, 2018, 25(3): 7-16. [29] Yang L, Pang Y, Moses HL.TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression[J]. Trends Immunol, 2010, 31(6): 220-227. [30] Saunier EF, Akhurst RJ.TGF beta inhibition for cancer therapy[J]. Curr Cancer Drug Targets, 2006, 6(7): 565-578. [31] Turley SJ, Cremasco V, Astarita JL.Immunological hallmarks of stromal cells in the tumour microenvironment[J]. Nat Rev Immunol, 2015, 15(11): 669-682. [32] Rüegg CR, Chiquet-Ehrismann R, Alkan SS.Tenascin, an extracellular matrix protein, exerts immunomodulatory activities[J]. Proc Natl Acad Sci USA, 1989, 86(19): 7437-7441. [33] Brand A, Singer K, Koehl GE, et al.LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells[J]. Cell Metab, 2016, 24(5): 657-671. [34] Lim SO, Li CW, Xia W, et al.EGFR Signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape[J]. Cancer Res, 2016, 76(5): 1284-1296. [35] Gabrilovich DI, Nagaraj S.Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174. [36] Norian LA, Rodriguez PC, O'mara LA, et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism[J]. Cancer Res, 2009, 69(7): 3086-3094. [37] Kareva I, Hahnfeldt P.The emerging "hallmarks" of metabolic reprogramming and immune evasion: distinct or linked?[J]. Cancer Res, 2013, 73(9): 2737-2742. [38] Maciver NJ, Jacobs SR, Wieman HL, et al.Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival[J]. J Leukoc Biol, 2008, 84(4): 949-957. [39] Chang CH, Qiu J, O'sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241. [40] Husain Z, Huang Y, Seth P, et al.Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells[J]. J Immunol, 2013, 191(3): 1486-1495. [41] Sun K, Tang S, Hou Y, et al.Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling[J]. EBioMedicine, 2019, 41: 370-383. [42] Goulet CR, Champagne A, Bernard G, et al.Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling[J]. BMC Cancer, 2019, 19(1): 137. [43] Zhu S, Zhou HY, Deng SC, et al.ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway[J]. Cell Death Dis, 2017, 8(5): e2806-e2819. [44] Suzuki A, Maeda T, Baba Y, et al.Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model[J]. Cancer Cell Int, 2014, 14(1): 129-140. [45] Chen KH, Tung PY, Wu JC, et al.An acidic extracellular pH induces Src kinase-dependent loss of beta-catenin from the adherens junction[J]. Cancer letters, 2008, 267(1): 37-48. [46] Chen Y, Chen CH, Tung PY, et al.An acidic extracellular pH disrupts adherens junctions in HepG2 cells by Src kinases-dependent modification of E-cadherin[J]. J Cell Biochem, 2009, 108(4): 851-859. [47] Bonuccelli G, Tsirigos A, Whitaker-Menezes D, et al.Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism[J]. Cell Cycle, 2010, 9(17): 3506-3514. [48] Walenta S, Schroeder T, Mueller-Klieser W.Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology[J]. Curr Med Chem, 2004, 11(16): 2195-2204. [49] Martinez-Outschoorn UE, Lin Z, Ko YH, et al.Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells[J]. Cell Cycle, 2011, 10(15): 2521-2528. [50] Migneco G, Whitaker-Menezes D, Chiavarina B, et al.Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling[J]. Cell Cycle, 2010, 9(12): 2412-2422. [51] Price JM, Baker LCJ, Boult JKR, et al.18F-fluorodeoxyglucose (FDG) uptake is increased in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistant compared with sensitive head and neck cancer xenografts[J]. Eur J Nucl Med and Mol Imaging, 2014, 41: S638-S641. [52] Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, et al.Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells[J]. Cell Cycle, 2010, 9(16): 3256-3276. [53] Pértega-Gomes N, Vizcaino JR, Attig J, et al.A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer[J]. BMC Cancer, 2014, 14: 352-360. |