[1] Chou B, Handa VL. Simulators and virtual reality in surgical education [J]. Obstet Gynecol Clin North Am, 2006, 33(2): 283-296. [2] Ledford H. Biotechnology: virtual reality[J]. Nature, 2013, 498(7452): 127-129. [3] 于洪波. 颅颌面三维形貌建模及手术模拟与预测研究[D].上 海: 上海交通大学, 2009. [4] Chen F, Gu L, Huang P, et al. Soft tissue modeling using nonlinear mass spring and simplified medial representation [J]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007: 5083-5086. [5] Sato M. Mechanical properties of living tissues[J]. Iyodenshi To Seitai Kogaku, 1986, 24(4): 213-219. [6] Monserrat C, Meier U, Alcaniz M, et al. A new approach for the real-time simulation of tissue deformations in surgery simulation [J]. Comput Methods Programs Biomed, 2001, 64(2): 77-85. [7] 于德栋. 边界元方法在虚拟现实手术模拟中的应用 [J]. 口腔颌面外科杂志, 2010, 20(5): 371-373. [8] Lapeer RJ, Gasson PD, Karri V. Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics [J]. Prog Biophys Mol Biol, 2010, 103(2-3): 208-216. [9] Flynn C, Stavness I, Lloyd J, et al. A finite element model of the face including an orthotropic skin model under in vivo tension [J]. Comput Methods Biomech Biomed Engin, 2015, 18(6): 571-582. [10] Kim J, Saitou K, Matuszak MM, et al. A finite element head and neck model as a supportive tool for deformable image registration[J]. Int J Comput Assist Radiol Surg, 2016,11(7):1311-1317. [11] Santos Lde A, Bahia MG, de Las Casas EB, et al. Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis [J]. J Endod, 2013, 39(11): 1444-1447. [12] 张娜, 封纯真, 赵守亮, 等. 根管锥度和根管固位材料对牙体组织应力分布影响的三维有限元分析 [J]. 中华口腔医学杂志, 2011, 46(3): 153-156. [13] Rafferty BT, Janal MN, Zavanelli RA, et al. Design features of a three-dimensional molar crown and related maximum principal stress. A finite element model study [J]. Dent Mater, 2010, 26(2): 156-163. [14] Cattaneo PM, Dalstra M, Melsen B. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element [J]. Orthod Craniofac Res, 2009, 12(2): 120-128. [15] Huang Y, Keilig L, Rahimi A, et al. Numeric modeling of torque capabilities of self-ligating and conventional brackets [J]. Am J Orthod Dentofacial Orthop, 2009, 136(5): 638-643. [16] Gautam P, Valiathan A, Adhikari R. Maxillary protraction with and without maxillary expansion: a finite element analysis of sutural stresses [J]. Am J Orthod Dentofacial Orthop, 2009, 136(3): 361-366. [17] Pelteret JP, Reddy BD. Development of a computational biomechanical model of the human upper-airway soft-tissues toward simulating obstructive sleep apnea [J]. Clin Anat, 2014, 27(2): 182-200. [18] Han L, Hipwell JH, Tanner C, et al. Development of patient-specific biomechanical models for predicting large breast deformation [J]. Phys Med Biol, 2012, 57(2): 455-472. [19] Marescaux J, Clément JM, Tassetti V, et al. Virtual reality applied to hepatic surgery simulation: the next revolution [J]. Ann Surg, 1998, 228(5): 627-634. [20] Sommer G, Eder M, Kovacs L, et al. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery [J]. Acta Biomater, 2013, 9(11): 9036-9048. [21] Idkaidek A, Jasiuk I. Toward high-speed 3d nonlinear soft tissue deformation simulations using abaqus software [J]. J Robot Surg, 2015, 9(4): 299-310. [22] Mendizabal A, Aguinaga I, Sánchez E. Characterisation and modelling of brain tissue for surgical simulation [J]. J Mech Behav Biomed Mater, 2015, 45: 1-10. [23] Mangado N, Ceresa M, Duchateau N, et al. Automatic model generation framework for computational simulation of cochlear implantation [J]. Ann Biomed Eng, 2016,44(8):2453-2463. [24] Zhang X, Tang Z, Liebschner MA, et al. An eFace-template method for efficiently generating patient-specific anatomically-detailed facial soft tissue FE models for craniomaxillofacial surgery simulation[J]. Ann Biomed Eng, 2016, 44(5): 1656-1671. [25] Tjoa T, Manuel CT, Leary RP, et al. A finite element model to simulate formation of the inverted-V deformity [J]. JAMA Facial Plast Surg, 2016, 18(2): 136-143. [26] Seevinck J, Scerbo MW, Belfore LA 2nd, et al. A simulation-based training system for surgical wound debridement [J]. Stud Health Technol Inform, 2006, 119: 491-496. [27] Zhang J, Gu L, Huang P, et al. Real-time cutting and suture simulation using hybrid elastic model [J]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007: 3646-3649. [28] Zhu B, Gu L. A hybrid deformable model for real-time surgical simulation [J]. Comput Med Imaging Graph, 2012,36(5): 356-365. [29] Terzopoulos D, Waters K. Physically-based facial modelling, analysis, and animation [J]. J Visual Comp Animat, 1990,1(2): 73-80. [30] San Vicente G, Buchart C, Borro D, et al. Maxillofacial surgery simulation using a mass-spring model derived from continuum and the scaled displacement method [J]. Int J Comput Assist Radiol Surg, 2009, 4(1): 89-98. [31] Lloyd B, Székely G, Harders M. Identification of spring parameters for deformable object simulation [J]. IEEE T Vis Comput Graph, 2007,13(5): 1081-1094. [32] Ullah R, Turner PJ, Khambay BS. Accuracy of three-dimensional soft tissue predictionsin orthognathic surgery after Le Fort Ⅰ advancement osteotomies [J]. Br J Oral Maxillofac Surg, 2015, 53(2): 153-157. [33] Zhang D, Wang T, Liu D, et al. Vascular deformation for vascular interventional surgery simulation [J]. Int J Med Robot, 2010, 6(2): 171-177. [34] Basafa E, Farahmand F. Real-time simulation of the nonlinear visco-elastic deformations of soft tissues [J]. Int J Comput Assist Radiol Surg, 2011,6(3): 297-307. [35] Brown J, Latombe JC, Montgomery K. Real-time knot-tying simulation [J]. Visual Comput, 2003,20(2): 165-179. [36] Lenoir J, Meseure P, Grisoni L, et al. A suture model for surgical simulation [J]. Lect Notes Comput Sci, 2004, 3078: 17-18. |