China Journal of Oral and Maxillofacial Surgery ›› 2022, Vol. 20 ›› Issue (4): 340-346.doi: 10.19438/j.cjoms.2022.04.005
• Original Articles • Previous Articles Next Articles
LI Hui1, HUANG Lin-jian2, XIE Qian-yang1, YANG Chi1
Received:
2021-10-03
Revised:
2022-03-05
Online:
2022-07-20
Published:
2022-07-20
CLC Number:
LI Hui, HUANG Lin-jian, XIE Qian-yang, YANG Chi. Reaction and changes of rabbit mandibular condyle cultured in vitro to mechanical compression[J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(4): 340-346.
[1] Dolwick MF.Intra-articular disc displacement. Part I: its questionable role in temporomandibular joint pathology[J]. J Oral Maxillofac Surg, 1995, 53(9): 1069-1072. [2] Naeije M, Te Veldhuis AH, Te Veldhuis EC, et al.Disc displacement within the human temporomandibular joint: a systematic review of a 'noisy annoyance'[J]. J Oral Rehabil, 2013, 40(2): 139-158. [3] Schellhas KP, Pollei SR, Wilkes CH.Pediatric internal derangements of the temporomandibular joint: effect on facial development[J]. Am J Orthod Dentofacial Orthop, 1993, 104(1): 51-59. [4] Ribeiro RF, Tallents RH, Katzberg RW, et al.The prevalence of disc displacement in symptomatic and asymptomatic volunteers aged 6 to 25 years[J]. J Orofac Pain, 1997, 11(1): 37-47. [5] Nebbe B, Major PW.Prevalence of TMJ disc displacement in a pre-orthodontic adolescent sample[J]. Angle Orthod, 2000, 70(6): 454-463. [6] Nebbe B, Major PW, Prasad NG.Adolescent female craniofacial morphology associated with advanced bilateral TMJ disc displacement[J]. Eur J Orthod, 1998, 20(6): 701-712. [7] Yamada K, Hiruma Y, Hanada K, et al.Condylar bony change and craniofacial morphology in orthodontic patients with temporomandibular disorders (TMD) symptoms: a pilot study using helical computed tomography and magnetic resonance imaging[J]. Clin Orthod Res, 1999, 2(3): 133-142. [8] Nakagawa S, Sakabe J, Nakajima I, et al.Relationship between functional disc position and mandibular displacement in adolescent females: posteroanterior cephalograms and magnetic resonance imaging retrospective study[J]. J Oral Rehabil, 2002, 29(5): 417-422. [9] Gidarakou IK, Tallents RH, Kyrkanides S, et al.Comparison of skeletal and dental morphology in asymptomatic volunteers and symptomatic patients with unilateral disk displacement without reduction[J]. Angle Orthod, 2003, 73(2): 121-127. [10] Gidarakou IK, Tallents RH, Kyrkanides S, et al.Comparison of skeletal and dental morphology in asymptomatic volunteers and symptomatic patients with bilateral disk displacement without reduction[J]. Angle Orthod, 2004,74(5): 684-690. [11] Flores-Mir C, Nebbe B, Heo G, et al.Longitudinal study of temporomandibular joint disc status and craniofacial growth[J]. Am J Orthod Dentofacial Orthop, 2006, 130(3): 324-330. [12] Ali AM, Sharawy M, O'Dell NL, et al. Morphological alterations in the elastic fibers of the rabbit craniomandibular joint following experimentally induced anterior disk displacement[J]. Acta Anat (Basel), 1993, 147(3): 159-167. [13] Legrell PE, Isberg A.Mandibular height asymmetry following experimentally induced temporomandibular joint disk displacement in rabbits[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 86(3): 280-285. [14] Legrell PE, Isberg A.Mandibular length and midline asymmetry after experimentally induced temporomandibular joint disk displacement in rabbits[J]. Am J Orthod Dentofacial Orthop 1999, 115(3): 247-253. [15] Bryndahl F, Eriksson L, Legrell PE, et al.Bilateral TMJ disk displacement induces mandibular retrognathia[J]. J Dent Res, 2006, 85(12): 1118-1123. [16] Bryndahl F, Warfvinge G, Eriksson L, et al.Cartilage changes link retrognathic mandibular growth to TMJ disc displacement in a rabbit model[J]. Int J Oral Maxillofac Surg, 2011, 40(6): 621-627. [17] Li H, Cai X, Wang S, et al.Disc positions and condylar changes induced by different stretching forces in the model for anterior disc displacement of temporomandibular joint[J]. J Craniofac Surg, 2014, 25(6): 2112-2116. [18] Shen G, Darendeliler MA.The adaptive remodeling of condylar cartilage-a transition from chondrogenesis to osteogenesis[J]. J Dent Res, 2005, 84(8): 691-699. [19] Sun HB.Mechanical loading, cartilage degradation, and arthritis[J]. Ann N Y Acad Sci, 2010, 1211: 37-50. [20] Ward DM, Behrents RG, Goldberg JS.Temporomandibular synovial fluid pressure response to altered mandibular positions[J]. Am J Orthod Dentofacial Orthop, 1990, 98(1): 22-28. [21] Tang GH, Rabie AB.Runx2 regulates endochondral ossification in condyle during mandibular advancement[J]. J Dent Res, 2005, 84(2): 166-171. [22] Wu JZ, Herzog W, Epstein M.Joint contact mechanics in the early stages of osteoarthritis[J]. Med Eng Phys, 2000, 22(1): 1-12. [23] Du J, Jiang Q, Mei L, et al.Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint[J]. Sci Rep, 2020, 10(1): 17457. [24] Hasler EM, Herzog W, Leonard TR, et al. [25] del Pozo R, Tanaka E, Tanaka M, et al. Influence of friction at articular surfaces of the temporomandibular joint on stresses in the articular disk: a theoretical approach with the finite element method[J]. Angle Orthod, 2003, 73(3): 319-327. [26] Nishio C, Tanimoto K, Hirose M, et al.Stress analysis in the mandibular condyle during prolonged clenching: a theoretical approach with the finite element method[J]. Proc Inst Mech Eng H, 2009, 223(6) :739-748. [27] Gong C, Wen J, Wang H, et al.Study of changes in rat mandibular condyle under intermittent cyclic and continuous compressive stress[J]. Arch Oral Biol, 2021,124: 105066. [28] Maeda S, Nishida J, Sato T, et al.Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress[J]. Osteoarthritis Cartilage, 2005, 13(2): 154-161. [29] Kessler MW, Grande DA.Tissue engineering and cartilage[J]. Organogenesis, 2008, 4(1):28-32. [30] Healy C, Uwanogho D, Sharpe PT.Regulation and role of Sox9 in cartilage formation[J]. Dev Dyn, 1999, 215(1): 69-78. [31] Chen P, Carrington JL, Hammonds RG, et al.Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2[J]. Exp Cell Res, 1991, 195(2): 509-515. [32] Salo LA, Hoyland J, Ayad S, et al.The expression of types X and VI collagen and fibrillin in rat mandibular condylar cartilage. Response to mastication forces[J]. Acta Odontol Scand, 1996, 54(5): 295-302. [33] Morita Y, Ito H, Ishikawa M, et al.Subchondral bone fragility with meniscal tear accelerates and parathyroid hormone decelerates articular cartilage degeneration in rat osteoarthritis model[J]. J Orthop Res, 2018, 36(7): 1959-1968. [34] Moo EK, Osman NA, Pingguan-Murphy B.The metabolic dynamics of cartilage explants over a long-term culture period[J]. Clinics (Sao Paulo), 2011, 66(8): 1431-1436. [35] Dumont J, Ionescu M, Reiner A, et al.Mature full-thickness articular cartilage explants attached to bone are physiologically stable over long-term culture in serum-free media[J]. Connect Tissue Res, 1999, 40(4): 259-272. [36] Li H, Huang L, Xie Q, et al.Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes [37] Huang L, Cai X, Li H, et al.The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint[J]. Arch Oral Biol, 2015,60(4): 622-630. [38] Nitzan DW.Intraarticular pressure in the functioning human temporomandibular joint and its alteration by uniform elevation of the occlusal plane[J]. J Oral Maxillofac Surg, 1994, 52(7): 671-679. [39] Xu T, Xu G, Gu Z, et al.Role of endoplasmic reticulum stress pathway in hydrostatic pressure-induced apoptosis in rat mandibular condylar chondrocytes[J]. Mol Cell Biochem, 2017, 429(1-2):23-31. [40] Zhang C, Xu Y, Cheng Y, et al.Effect of asymmetric force on the condylar cartilage, subchondral bone and collagens in the temporomandibular joints[J]. Arch Oral Biol, 2015, 60(4): 650-663. [41] Wang L, Detamore MS.Tissue engineering the mandibular condyle[J]. Tissue Eng, 2007, 13(8): 1955-1971. [42] Martel-Pelletier J, Boileau C, Pelletier JP, et al.Cartilage in normal and osteoarthritis conditions[J]. Best Pract Res Clin Rheumatol, 2008, 22(2): 351-384. [43] Park SJ, Cheon EJ, Lee MH, et al.MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes[J]. Arthritis Rheum, 2013,65(12): 3141-3152. [44] Wang M, Sampson ER, Jin H, et al.MMP13 is a critical target gene during the progression of osteoarthritis[J]. Arthritis Res Ther, 2013, 15(1): R5-R16. [45] Uekita H, Takahashi S, Domon T, et al.Changes in collagens and chondrocytes in the temporomandibular joint cartilage in growing rats fed a liquid diet[J]. Ann Anat, 2015, 202: 78-87. [46] Orajärvi M, Thesleff I, Hartikainen H, et al.Effect of estrogen and food hardness on metabolism and turnover of condylar cartilage[J]. J Oral Facial Pain Headache, 2015, 29(3): 297-307. [47] Lories RJ, Luyten FP.The bone-cartilage unit in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(1): 43-49. [48] Zhen G, Wen C, Jia X, et al.Inhibition of TGF-β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712. [49] Jiao K, Niu LN, Li QH, et al.β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis[J]. Sci Rep, 2015, 5: 12593. [50] Tian Y, Chen J, Yan X, et al.Overloaded orthopedic force induces condylar subchondral bone absorption by stimulating rat mesenchymal stem cells differentiating into osteoclasts [51] Goldring MB, Goldring SR.Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J]. Ann N Y Acad Sci, 2010,1192: 230-237. |
[1] | LI Xiang, DING Ruo-yi, WANG Xiu-mei, HE Dong-mei, WANG Dong-mei. Analysis of the characteristics of standard alloplastic temporomandibular joint prostheses during mouth opening movement [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 353-359. |
[2] | LI Chen-xi, FANG Chang, GONG Zhong-cheng, SHAO Bo. Case report of chondromyxofibroma involving the overall structure of the temporomandibular joint: surgical resection and reconstruction [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(4): 409-412. |
[3] | MI Na, AN Wei, JIN Xue-mei, XIE Shuai, YAO Zhi-tao. Research on the preventive effect of lutein on traumatic temporomandibular joint ankylosis of rabbits [J]. China Journal of Oral and Maxillofacial Surgery, 2024, 22(3): 216-221. |
[4] | HE Mei-juan, XIA Di, BAI Guo, ZHAO Jie-yun, YU Lei-lei, GU Ya-jie. The application of multi-disciplinary collaborative model in nursing care of patients undergoing temporomandibular joint ankylosis with costochondral rib graft reconstruction surgery [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 553-558. |
[5] | CHEN Yun-liang, MAN Cheng, LI Xiao-yu, WU Jing, WEI Liu-qiong, LI Wen-long. An experimental study of pathogenesis similarity between traumatic temporomandibular joint ankylosis and heterotopic ossification [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(5): 461-466. |
[6] | DENG Li-ni, CHEN Chuan-jun, WANG Yi, XIANG Xian-wang. Calcium pyrophosphate dihydrate crystal deposition disease of the temporomandibular joint: case report and literature review [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(5): 522-525. |
[7] | YU Ye-ke, DING Ruo-yi, SUN Jia-li, ZHANG Zhi-yuan, HE Dong-mei. Single-cell transcription atlas for mandibular condyle cartilage and subchondral bone marrow in rat temporomandibular joint osteoarthritis [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(4): 332-339. |
[8] | WANG He-jing, ZHANG Cai-xin, XUN Xing-xiang, HAN Lin-zi, YAN Ting-ting, XU Xiao, YUAN Rong-tao. Osteogenic role of bone substitute in maxillary sinus augmentation and simultaneous implantation [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(3): 218-224. |
[9] | LIU Xiao-dong, ZHANG Ying, MA Jin-yu, LI Yu-zeng. Expression and significance of sclerostin in the process of alveolar bone reconstruction in type 2 diabetic rats with periodontitis [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(1): 19-23. |
[10] | WANG Tao-xian, CHENG Li-jun, WEI Ze-quan, PAN Xiang-feng, ZHAO Min-chao. Analysis of correlation between the shape of mandibular condylar head and occurrence of sagittal fracture of the condyle [J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(1): 59-63. |
[11] | YUE Shi-jing, ZHAO Jiong, BAI Guo, CHEN Min-jie, YANG Chi. Preliminary clinical evaluation of lateral pterygoid muscle preservation in total temporomandibular joint reconstruction with stock prosthesis [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(6): 548-553. |
[12] | LEE Mui-lee, ZHU Yao-min, WANG Yu-meng, DAI Juan, ZHANG Dan-di, LIANG Xiao. Clinical effects of the combination of rhytidectomy and temporomandibular joint surgery on 23 patients with internal derangement of the temporomandibular joint and aging faces [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(6): 554-559. |
[13] | CHEN Jing, ZHU Min. Clinical efficacy of stable occlusal plate combined with joint lavage in the treatment of temporomandibular joint disorders [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(6): 565-570. |
[14] | ZHANG Da-he, SHEN Pei, YANG Chi. Characteristics of adolescent patients with temporomandibular joint anterior disc displacement [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(5): 437-442. |
[15] | ZHANG Da-he, SHEN Pei, YANG Chi. Characteristics of adolescent patients with temporomandibular joint anterior disc displacement [J]. China Journal of Oral and Maxillofacial Surgery, 2022, 20(5): 443-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||