[1] Castro PR, Barbosa AS, Pereira JM, et al.Cellular and molecular heterogeneity associated with vessel formation processes[J]. Biomed Res Int, 2018, 2018: 6740408. [2] Park JK, Lee TW, Do EK, et al.Role of Notch1 in the arterial specification and angiogenic potential of mouse embryonic stem cell-derived endothelial cells[J]. Stem Cell Res Ther, 2018, 9(1): 197-210. [3] Model LS, Hall MR, Wong DJ, et al.Arterial shear stress reduces Eph-B4 expression in adult human veins[J]. Yale J Biol Med, 2014, 87(3): 359-371. [4] Williams C, Kim SH, Ni TT, et al.Hedgehog signaling induces arterial endothelial cell formation by repressing venous cell fate[J]. Dev Biol, 2010, 341(1): 196-204. [5] Jin D, Zhu D, Fang Y, et al.VEGFA signaling regulates diverse artery/vein formation in vertebrate vasculatures[J]. J Genet Genomics, 2017, 44(10): 483-492. [6] Chen X, Qin J, Cheng CM, et al.COUP-TFⅡis a major regulator of cell cycle and Notch signaling pathways[J]. Mol Endocrinol, 2012, 26(8): 1268-1277. [7] Fang JS, Coon BG, Gillis N, et al.Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification[J]. Nat Commun, 2017, 8(1): 2149-2163. [8] Luxán G, Stewen J, Díaz N, et al.Endothelial EphB4 maintains vascular integrity and transport function in adult heart[J]. Elife, 2019, 8:e45863. [9] Wolf K, Hu H, Isaji T, et al.Molecular identity of arteries, veins, and lymphatics[J]. J Vasc Surg, 2019, 69(1): 253-262. [10] You LR, Lin FJ, Lee CT, et al.Suppression of Notch signalling by the COUP-TFⅡtranscription factor regulates vein identity[J]. Nature, 2005, 435(7038): 98-104. [11] Pasquale EB.Eph-Ephrin bidirectional signaling in physiology and disease[J]. Cell, 2008, 133(1): 38-52. [12] Pitulescu ME, Adams RH.Regulation of signaling interactions and receptor endocytosis in growing blood vessels[J]. Cell Adh Migr, 2014, 8(4): 366-377. [13] Kim D, Lee V, Dorsey TB, et al.Neuropilin-1 mediated arterial differentiation of murine pluripotent stem cells[J]. Stem Cells Dev, 2018, 27(7): 441-455. [14] Carmeliet P, Ferreira V, Breier G, et al.Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele[J]. Nature, 1996, 380(6573): 435-439. [15] Casie CS, Rost MS, Enriquez JR, et al.Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression[J]. Dev Biol, 2017, 424(2): 147-161. [16] Yang C, Guo Y, Jadlowiec CC, et al.Vascular endothelial growth factor-A inhibits EphB4 and stimulates delta-like ligand 4 expression in adult endothelial cells[J]. J Surg Res, 2013, 183(1): 478-486. [17] Ginsberg M, James D, Ding BS, et al.Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression[J]. Cell, 2012, 151(3): 559-575. [18] Chapouly C, Guimbal S, Hollier PL, et al.Role of Hedgehog signaling in vasculature development, differentiation, and maintenance[J]. Int J Mol Sci, 2019, 20(12): 3076-3100. [19] Kume T.Specification of arterial, venous, and lymphatic endothelial cells during embryonic development[J]. Histol Histopathol,2010, 25(5): 637-646. [20] Swift MR, Weinstein BM.Arterial-venous specification during development[J]. Circ Res, 2009, 104(5): 576-588. [21] Tian DY, Jin XR, Zeng X, et al.Notch signaling in endothelial cells: Is It the therapeutic target for vascular neointimal hyperplasia?[J]. Int J Mol Sci, 2017, 18(8): 1615-1633. [22] Ando K, Wang W, Peng D, et al. Peri-arterial specification of vascular mural cells from naive mesenchyme requires notch signaling [J]. Development, 2019, 146(2): dev165589. [23] Engert S, Burtscher I, Liao WP, et al.Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse[J]. Development, 2013, 140(15): 3128-3138. [24] Corada M, Nyqvist D, Orsenigo F, et al.The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling[J]. Dev Cell, 2010, 18(6): 938-949. [25] Thurston G, Yancopoulos GD.Gridlock in the blood[J]. Nature, 2001, 414(6860): 163-164. [26] Lindskog H, Kim YH, Jelin EB, et al.Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals[J]. Development, 2014, 141(5): 1120-1128. [27] Chu M, Li T, Shen B, et al.Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFⅡ[J]. Elife,2016, 5: e210321. [28] Chiang I KN, Fritzsche M, Pichol TC, et al.SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development[J]. Development, 2017, 144(14): 2629-2639. [29] Corada M, Orsenigo F, Morini MF, et al.Sox17 is indispensable for acquisition and maintenance of arterial identity[J]. Nat Commun, 2013, 4: 2609-2623. [30] Yao J, Wu X, Zhang D, et al.Elevated endothelial Sox2 causes lumen disruption and cerebral arteriovenous malformations[J]. J Clin Invest, 2019, 129(8): 3121-3133. [31] Zhang D, Qiao X, Wang L, et al.Skip is essential for Notch signaling to induce Sox2 in cerebral arteriovenous malformations[J]. Cell Signal, 2020, 68: 109537. [32] Mukouyama YS, Gerber HP, Ferrara N, et al.Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback[J]. 2005, 132(5): 941-952. [33] Hamard L, Santoro T, Allagnat F, et al.Targeting connexin37 alters angiogenesis and arteriovenous differentiation in the developing mouse retina[J]. FASEB J, 2020, 34(6): 8234-8249. [34] Huang CX, Chen N, Wu XJ, et al.The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations[J]. FASEB J, 2015, 29(12): 4901-4913. [35] Kilari S, Cai C, Zhao C, et al.The role of microRNA-21 in venous neointimal hyperplasia: implications for targeting miR-21 for VNH treatment[J]. Mol Ther, 2019, 27(9): 1681-1693. [36] Huang CX, Huang Y, Duan XK, et al.Zebrafish miR-462-731 regulates hematopoietic specification and pu.1-dependent primitive myelopoiesis[J]. Cell Death Differ,2019, 26(8): 1531-1544. [37] Lasch M, Kleinert EC, Meister S, et al.Extracellular RNA released due to shear stress controls natural bypass growth by mediating mechanotransduction in mice[J]. Blood, 2019, 134(17): 1469-1479. [38] Hwa JJ, Beckouche N, Huang L, et al.Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow[J]. Sci Rep, 2017, 7(1): 11965-11976. [39] 杜仲, 马海龙, 张凌, 等. TIE2-R849W突变斑马鱼模型的建立及其在静脉畸形发病中的作用探讨[J].中国口腔颌面外科杂志, 2018, 16(1): 6-11. [40] 杜仲, 刘嘉靓, 郑家伟, 等. EGFL7 在血管生成调控中的研究进展[J]. 中国口腔颌面外科杂志, 2019, 17(4): 377-381. |