[1] 陈琦, 郑谦. 叉头框C-2基因与中轴骨骼系统的发育[J].国际口腔医学杂志, 2011, 38(3): 361-363. [2] Mellor RH, Brice G, Stanton AW, et al.Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb[J]. Circulation, 2007, 115(14): 1912-1920. [3] Ivanov KI, Agalarov Y, Valmu L, et al.Phosphorylation regulates FOXC2-mediated transcription in lymphatic endothelial cells[J]. Mol Cell Biol, 2013, 33(19): 3749-3761. [4] Liebl J, Zhang S, Moser M, et al.Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2[J]. Nat Commun, 2015, 6: 7274. [5] Sweet DT, Jiménez JM, Chang J, et al.Lymph flow regulates collecting lymphatic vessel maturation in vivo[J]. J Clin Invest, 2015, 125(8): 2995-3007. [6] Sabine A, Agalarov Y, Maby-El Hajjami H, et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation[J]. Dev Cell, 2012, 22(2): 430-445. [7] Sabine A, Bovay E, Demir CS, et al.FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature[J]. J Clin Invest, 2015, 125(10): 3861-3877. [8] Cha B, Geng X, Mahamud MR, et al.Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves[J]. Gene Dev, 2016, 30(12): 1454-1469. [9] Kazenwadel J, Betterman KL, Chong CE, et al.GATA2 is required for lymphatic vessel valve development and maintenance[J]. J Clin Invest, 2015, 125(8): 2979-2994. [10] Norrmén C, Ivanov KI, Cheng J, et al.Foxc2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1[J]. J Cell Biol, 2009, 185(3): 439-457. [11] Taube JH, Herschkowitz JI, Komurov K, et al.Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes[J]. P Natl Acad Sci USA, 2010,107(35): 15449-15454. [12] Mani SA, Yang J, Brooks M, et al.Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers[J]. P Natl Acad Sci USA, 2007, 104(24): 10069-10074. [13] Hader C, Marlier A, Cantley L.Mesenchymal-epithelial transition in epithelial response to injury: the role of Foxc2[J]. Oncogene, 2010, 29(7): 1031-1040. [14] Pietilä M, Vijay GV, Soundararajan R, et al.FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition[J]. Sci Rep, 2016, 6: 23070. [15] Hollier BG, Tinnirello AA, Werden SJ, et al.FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer[J]. Cancer Res, 2013, 73(6): 1981-1992. [16] Sarkar TR, Battula VL, Werden SJ, et al.GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer[J]. Oncogene, 2015, 34(23): 2958-2967. [17] Wang QS, Kong PZ, Li XQ, et al.FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer[J]. Breast Cancer Res, 2015, 17: 30. [18] Cai J, Tian AX, Wang QS, et al.FOXF2 suppresses the FOXC2-mediated epithelial-mesenchymal transition and multidrug resistance of basal-like breast cancer[J]. Cancer Lett, 2015, 367(2): 129-137. [19] Golden D, Cantley LG.Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm[J]. Oncogene, 2015, 34(36): 4702-4712. [20] Ji X, Lu H, Zhou Q, et al.LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis[J]. Elife, 2014, 3: e02907. [21] Johansson AC, La Fleur L, Melissaridou S, et al.The relationship between EMT, CD44(high) /EGFR(low) phenotype, and treatment response in head and neck cancer cell lines[J]. J Oral Pathol Med, 2016, 45(9): 640-646. [22] Li YC, Chang JT, Chiu C, et al.Areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells[J]. Mol Carcinogen, 2016, 55(5): 1012-1023. [23] Imayama N, Yamada SI, Yanamoto S, et al.FOXC2 expression is associated with tumor proliferation and invasion potential in oral tongue squamous cell carcinoma[J]. Pathol Oncol Res, 2015, 21(3): 783-791. [24] Ferrara N.Pathways mediating VEGF-independent tumor angiogenesis[J]. Cytokine Growth Factor Rev, 2010, 21(1): 21-26. [25] Danciu TE, Chupreta S, Cruz O, et al.Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2[J]. J Biol Chem, 2012, 287(22): 18318-18329. [26] Sasahira T, Ueda N, Yamamoto K, et al.Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma[J]. PloS One, 2014, 9(3): e92534. [27] He F, Hu X, Xiong W, et al.Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect[J]. Dev Biol, 2014, 391(2): 170-181. [28] Ozturk F, Li Y, Zhu X, et al.Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice[J]. BMC genomics, 2013, 14: 113. [29] Gozo MC, Aspuria PJ, Cheon DJ, et al.Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis[J]. Cell Death Differ, 2013, 20(8): 1031-1042. [30] You W, Fan L, Duan D, et al.Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation[J]. Mol Cell Biochem, 2014, 386(1-2): 125-134. [31] Kim SH, Cho KW, Choi HS, et al.The forkhead transcription factor Foxc2 stimulates osteoblast differentiation[J]. Biochem Biophys Res Commun, 2009, 386(3): 532-536. [32] Cederberg A, Grenning LM, Ahrén B, et al.FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance[J]. Cell, 2001, 106(5): 563-573. [33] Gan L, Liu Z, Jin W, et al.Foxc2 enhances proliferation and inhibits apoptosis through activating Akt/mTORC1 signaling pathway in mouse preadipocytes[J]. J Lipid Res, 2015, 56(8): 1471-1480. [34] Yao Y, Suraokar M, Darnay BG, et al. BSTA promotes mTORC2-Mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation[J]. Sci Signal, 2013, 6 (257): ra2. [35] Lidell ME, Seifert EL, Westergren R, et al.The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function[J]. Diabetes, 2011, 60(2): 427-435. [36] Zhang J, Zhang Y, Sun T, et al.Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2[J]. Sci Rep, 2013, 3: 1476. |