中国口腔颌面外科杂志 ›› 2020, Vol. 18 ›› Issue (3): 219-225.doi: 10.19438/j.cjoms.2020.03.006

• 论著 • 上一篇    下一篇

PEGS/β-TCP屏障膜在促进大鼠颅骨缺损骨组织再生中的作用

支音1, 郁爽2, 沈洪洲1, 司家文1,*, 袁媛2, 史俊1,*, 刘昌胜2   

  1. 1.上海交通大学医学院附属第九人民医院·口腔医学院 口腔颅颌面科,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011;
    2.华东理工大学 超细材料制备与应用教育部重点实验室,上海 200237
  • 收稿日期:2019-10-29 修回日期:2020-01-14 发布日期:2020-06-18
  • 通讯作者: 史俊,E-mail: dr.shijun.oms@gmail.com;司家文,E-mail: sjwlyl@163.com。*共同通信作者
  • 作者简介:支音(1993-),女,硕士研究生,E-mail:zhiyin0908@163.com
  • 基金资助:
    国家自然科学基金(81600827)

Application of PEGS/β-TCP membrane in promoting bone regeneration of rat calvarial defect

ZHI Yin1, YU Shuang2, SHEN Hong-zhou1, SI Jia-wen1, YUAN Yuan2, SHI Jun1, LIU Chang-sheng2   

  1. 1. Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology. Shanghai 200011;
    2. Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology. Shanghai 200237, China
  • Received:2019-10-29 Revised:2020-01-14 Published:2020-06-18

摘要: 目的 通过体内和体外实验,探讨PEGS/β-TCP复合膜诱导骨组织再生的效果。方法 将PEGS/β-TCP复合膜与大鼠骨髓间充质干细胞(rBMSCs)共培养,观察rBMSCs细胞黏附、增殖及成骨分化情况。建立大鼠颅骨缺损动物模型,将PEGS/β-TCP复合膜植入缺损特定区域,通过Micro-CT观察骨缺损区域新骨形成情况;再通过脱钙组织H-E染色,观察炎性浸润程度和新骨形成的情况。采用SPSS 22.0软件包对数据进行统计学分析。结果 rBMSCs可良好黏附和广泛分布于PEGS/β-TCP复合膜上。rBMSCs接种1、4和7 d后进行的dsDNA定量分析结果显示,从第1天到第7天,细胞DNA含量逐渐增加;培养7 d后,实验组细胞DNA含量显著高于对照组(P<0.001)。对接种于PEGS/β-TCP复合膜上的rBMSCs进行体外成骨诱导,其碱性磷酸酶(ALP)染色浓度显著增高。ALP活性半定量检测显示,实验组较对照组细胞ALP活性增加更为显著(P<0.01)。成骨诱导21 d后,实验组与对照组茜素红矿化染色结果与ALP染色结果一致。动物模型Micro-CT检测及组织H-E染色均显示,实验组各检测时间点的新骨形成量显著高于对照组,且各组炎症反应均轻微可控。结论 PEGS/β-TCP复合膜具有理想的细胞相容性和骨引导再生效果。

关键词: 引导骨组织再生, PEGS/β-TCP复合膜, 骨髓间充质干细胞, 成骨分化, 大鼠, 颅骨缺损

Abstract: PURPOSE: The purpose of this study was to explore the effect of PEGS/β-TCP membrane on guided bone regeneration. METHODS: PEGS/β-TCP membrane was co-cultured with rat bone marrow mesenchymal stem cells (rBMSCs) to observe cell adhesion, proliferation and osteogenic differentiation. Animal model of rat skull defect was established, and PEGS/β-TCP membrane was implanted in the area of the defect. Micro-CT was used to observe the formation of new bone in bone defect area, and H-E staining of decalcified tissue was used to observe the degree of inflammatory infiltration and new bone formation. Statistical analysis was performed with SPSS 22.0 software package. RESULTS: rBMSCs can be well adhered and widely distributed on PEGS/β-TCP membrane. Quantitative analysis of dsDNA at 1, 4 and 7 days showed that the DNA content in both groups increased from day 1 to day 7, and there was significant difference between the control group and the experimental group at day 7 (P<0.001). Alkaline phosphatase (ALP) activity of rBMSCs on PEGS/β-TCP membrane increased significantly after osteogenic induction in vitro. ALP activity of the experimental group was significantly higher than that of the control group (P<0.01). The results of Alizarin red mineralization staining and ALP staining showed the same trend at day 21. Micro-CT examination and H-E staining showed that the formation of new bone in the experimental group was significantly higher than that in the control group, and the inflammatory reaction in each group was mild. CONCLUSIONS: This study shows that PEGS/β-TCP composite membrane had ideal cytocompatibility and guided bone regeneration effect, which provides theoretical support for further study and application of PEGS/β-TCP membrane in guided bone regeneration.

Key words: Guided bone regeneration, PEGS/β-TCP membrane, Mesenchymal stem cells, Osteogenic differentiation, Rat, Calvarial defect

中图分类号: