[1] Zandi M, Miresmaeili A, Heidari A.Short-term skeletal and dental changes following bone-borne versus tooth-borne surgically assisted rapid maxillary expansion: a randomized clinical trial study[J]. J Craniomaxillofac Surg, 2014, 42(7): 1190-1195. [2] Carlson C, Sung J, McComb RW, et al. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult[J]. Am J Orthod Dentofacial Orthop, 2016, 149(5): 716-728. [3] Neyt NM, Mommaerts MY, Abeloos JV, et al.Problems, obstacles and complications with transpalatal distraction in non-congenital deformities[J]. J Craniomaxillofac Surg, 2002, 30(3): 139-143. [4] Vandersea BA, Ruvo AT, Frost DE.Maxillary transverse deficiency - surgical alternatives to management[J]. Oral Maxillofac Surg Clin North Am, 2007, 19(3): 351-368. [5] Khosravi M, Ugolini A, Miresmaeili A, et al.Tooth-borne versus bone-borne rapid maxillary expansion for transverse maxillary deficiency: a systematic review[J]. Int Orthod, 2019, 17(3): 425-436. [6] Fatima F, Jeelani W, Ahmed MJD, et al.Current trends in craniofacial distraction: a literature review[J]. Dent Med Probl, 2020, 57(4): 441-448. [7] Andrucioli MCD, Matsumoto MAN.Transverse maxillary deficiency: treatment alternatives in face of early skeletal maturation[J]. Dental Press J Orthod, 2020, 25(1): 70-79. [8] Aloise AC, Pereira MD, Hino CT, et al.Stability of the transverse dimension of the maxilla after surgically assisted rapid expansion[J]. J Craniofac Surg, 2007, 18(4): 860-865. [9] Moussa R, O'Reilly MT, Close JM. Long-term stability of rapid palatal expander treatment and edgewise mechanotherapy[J]. Am J Orthod Dentofacial Orthop, 1995, 108(5): 478-488. [10] Ramstad T, Jendal T.A long-term study of transverse stability of maxillary teeth in patients with unilateral complete cleft lip and palate[J]. J Oral Rehabil, 1997, 24(9): 658-665. [11] Dreifke MB, Ebraheim NA, Jayasuriya AC.Investigation of potential injectable polymeric biomaterials for bone regeneration[J]. J Biomed Mater Res A, 2013, 101(8): 2436-2447. [12] Tamimi F, Torres J, Lopez-Cabarcos E, et al.Minimally invasive maxillofacial vertical bone augmentation using brushite based cements[J]. Biomaterials, 2009, 30(2): 208-216. [13] Zhou Y, Ni Y, Liu Y, et al.The role of simvastatin in the osteogenesis of injectable tissue-engineered bone based on human adipose-derived stromal cells and platelet-rich plasma[J]. Biomaterials, 2010, 31(20): 5325-5335. [14] Ingavle GC, Gionet-Gonzales M, Vorwald CE, et al.Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model[J]. Biomaterials, 2019, 197: 119-128. [15] Terbish M, Yoo SH, Kim HJ, et al.Accelerated bone formation in distracted alveolar bone after injection of recombinant human bone morphogenetic protein-2[J]. J Periodontol, 2015, 86(9): 1078-1086. [16] Wang L, Zhou S, Liu B, et al.Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis[J]. J Orthop Res, 2006, 24(12): 2238-2245. [17] Cho BC, Chung HY, Lee DG, et al.The effect of chitosan bead encapsulating calcium sulfate as an injectable bone substitute on consolidation in the mandibular distraction osteogenesis of a dog model[J]. J Oral Maxillofac Surg, 2005, 63(12): 1753-1764. [18] Wolberg AS.Thrombin generation and fibrin clot structure[J]. Blood Rev, 2007, 21(3): 131-142. [19] Adam SS, Key NS, Greenberg CS.D-dimer antigen: current concepts and future prospects[J]. Blood, 2009, 113(13): 2878-2887. [20] Padilla S, Sanchez M, Orive G, et al.Human-based biological and biomimetic autologous therapies for musculoskeletal tissue regeneration[J]. Trends Biotechnol, 2017, 35(3): 192-202. [21] Noori A, Ashrafi SJ, Vaez-Ghaemi R, et al.A review of fibrin and fibrin composites for bone tissue engineering[J]. Int J Nanomedicine, 2017, 12: 4937-4961. [22] McDuffee LA, Esparza Gonzalez BP, Nino-Fong R, et al. Evaluation of an in vivo heterotopic model of osteogenic differentiation of equine bone marrow and muscle mesenchymal stem cells in fibrin glue scaffold[J]. Cell Tissue Res, 2014, 355(2): 327-335. [23] Abiraman S, Varma HK, Umashankar PR, et al.Fibrin glue as an osteoinductive protein in a mouse model[J]. Biomaterials, 2002, 23(14): 3023-3031. [24] Wang L, Zhang C, Li C, et al.Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair[J]. Mater Sci Eng C Mater Biol Appl, 2016, 69: 1125-1136. [25] Dong J, Cui G, Bi L, et al.The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects[J]. Int J Nanomedicine, 2013, 8: 1317-1324. [26] van Esterik FA, Zandieh-Doulabi B, Kleverlaan CJ, et al. Enhanced osteogenic and vasculogenic differentiation potential of human adipose stem cells on biphasic calcium phosphate scaffolds in fibrin gels[J]. Stem Cells Int, 2016, 2016: 1934270. [27] Oh JH, Kim HJ, Kim TI, et al.The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation[J]. Biomaterials, 2012, 33(16): 4089-4099. [28] Arkudas A, Pryymachuk G, Hoereth T, et al.Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model[J]. Blood Coagul Fibrinolysis, 2012, 23(5): 419-427. [29] Hong C, Song D, Lee DK, et al.Reducing posttreatment relapse in cleft lip palatal expansion using an injectable estrogen-nanodiamond hydrogel[J]. Proc Natl Acad Sci USA, 2017, 114(35): E7218-E7225. [30] Segura-Castillo JL, Aguirre-Camacho H, González-Ojeda A, et al.Reduction of bone resorption by the application of fibrin glue in the reconstruction of the alveolar cleft[J]. J Craniofac Surg, 2005, 16(1): 105-112. [31] Giannini G, Mauro V, Agostino T, et al.Use of autologous fibrin-platelet glue and bone fragments in maxillofacial surgery[J]. Transfus Apher Sci, 2004, 30(2): 139-144. [32] Pagel C, Song S-J, Loh L, et al.Thrombin-stimulated growth factor and cytokine expression in osteoblasts is mediated by protease-activated receptor-1 and prostanoids[J]. Bone, 2009, 44(5): 813-821. [33] Nair M, Varma HK, John A.Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells[J]. Tissue Eng Part A, 2009, 15(7): 1619-1631. [34] 刘红, 杨超, 陈国庆, 等. 纤维蛋白胶不同复合方式对牙囊细胞增殖活性的影响[J]. 华西口腔医学杂志, 2015, 33(2): 135-140. [35] Roberts IV, Bukhary D, Valdivieso CYL, et al.Fibrin matrices as (injectable) biomaterials: formation, clinical use, and molecular engineering[J]. Macromol Biosci, 2020, 20(1): e1900283. [36] Tang GH, Xu J, Chen RJ, et al.Lithium delivery enhances bone growth during midpalatal expansion[J]. J Dent Res, 2011, 90(3): 336-340. [37] Altan AB, Bicakci AA, Avunduk MC, et al.The effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats[J]. Lasers Med Sci, 2015, 30(1): 255-262. [38] Kara MI, Erciyas K, Altan AB, et al.Thymoquinone accelerates new bone formation in the rapid maxillary expansion procedure[J]. Arch Oral Biol, 2012, 57(4): 357-363. [39] Yuan Z, Wei P, Huang Y, et al.Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration[J]. Acta Biomater, 2019, 85: 294-309. |