[1] 黄迪炎,陈海龙. 先天性唇腭裂治疗现状[J]. 实用医药杂志, 2003, 20(1): 68-70. [2] Cho-Lee GY, García-Díez EM, Nunes RA, et al. Review of secondary alveolar cleft repair[J]. Ann Maxillofac Surg, 2013, 3(1): 46-50. [3] Klijn RJ, van den Beucken JJ, Félix Lanao RP, et al. Three different strategies to obtain porous calcium phosphate cements: comparison of performance in a rat skull bone augmentation model [J]. Tissue Eng Part A, 2012, 18(11-12): 1171-1182. [4] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopaedic devices [J]. Biomaterials, 2000, 21(23): 2335-2346. [5] Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part Ⅰ. Traditional factors[J]. Tissue Eng, 2001, 7(6): 679-689. [6] Ramakrishna S, Huang ZM, Kumar GV, et al. An introduction to biocomposites [M]. London: Imperial College Press, 2004: 36. [7] E LL, Xu LL, Wu X, et al. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering[J]. Tissue Eng Part A, 2010, 16(9): 2927-2940. [8] Sohier J, Daculsi G, Sourice S, et al. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering [J]. J Biomed Mater Res A, 2010, 92(3): 1105-1114. [9] Dohzono S, Imai Y, Nakamura H, et al. Successful spinal fusion by E. coli-derived BMP-2-adsorbed porous beta-TCP granules: a pilot study [J]. Clin Orthop Relat Res, 2009, 467(12): 3206-3212. Ruhé PQ, Kroese-Deutman HC, Wolke JG, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits [J]. Biomaterials, 2004, 25(11): 2123-2132. [11] Luvizuto ER, Tangl S, Zanoni G, et al. The effect of BMP-2 on the osteoconductive properties of b-tricalcium phosphate in rat calvaria defects [J]. Biomaterials, 2011, 32(15): 3855-3861. [12] Abarrategi A, Moreno-Vicente C, Ramos V, et al. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application [J]. Tissue Eng Part A,2008, 14(8): 1305-1319. [13] Kim JW, Choi KH, Yun JH, et al. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(3): 298-306. [14] Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: formulation, process and storage considerations [J]. Adv Drug Deliv Rev, 2006, 58(15): 1688-1713. [15] Griebenow K, Klibanov AM. Lyophilization-induced reversible changes in the secondary structure of proteins [J]. Proc Natl Acad Sci USA, 1995, 92(24): 10969-10976. [16] Kasper JC, Schaffert D, Ogris M, et al. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability-A step closer from promising technology to application [J]. J Control Release, 2011, 151(3): 246-255. [17] Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis [J]. Annu Rev Physiol, 1998, 60: 73-103. [18] Lins RD, Pereira CS, Hunenberger PH. Trehalose-protein interaction in aqueous solution [J]. Proteins, 2004, 55(1): 177-186. [19] 许悦, 陈振琦, 吴军, 等. 唇腭裂合并的单侧牙槽突裂大鼠模型的建立和稳定性研究 [J]. 上海交通大学学报(医学版), 2010, 30(9): 1111-1114. [20] Habraken WJ, Boerman OC, Wolke JG, et al. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres [J]. J Biomed Mater Res A, 2009, 91(2): 614-622. [21] Zhao J, Wang SY, Bao JQ, et al. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo[J]. PLoS One, 2013, 8(1): e54645. |