中国口腔颌面外科杂志 ›› 2022, Vol. 20 ›› Issue (1): 15-21.doi: 10.19438/j.cjoms.2022.01.003

• 论著 • 上一篇    下一篇

数字化载葡萄糖酸氯己定PLA/nHA复合支架的制备及性能分析

张秀秀1,2, 孙健1,2,3,4, 李亚莉5, 刘延山1,2, 陈立强1,2, 许尧祥1,2, 徐泽先1,2, 孟坤1,2, 孙鸣1,2, 周东阳1,2, 徐典1,2, 高小涵1,2, 程立地1,2   

  1. 1.青岛大学附属医院 口腔颌面外科,山东 青岛 266003;
    2.青岛大学 口腔医学院,山东 青岛 266003;
    3.青岛市口腔数字医学与3D打印工程实验室,山东 青岛 266003;
    4.山东省数字医学与计算机辅助手术重点实验室, 山东 青岛 266003;
    5.青岛大学附属医院 手术室, 山东 青岛 266003
  • 收稿日期:2021-06-28 修回日期:2021-09-11 出版日期:2022-01-20 发布日期:2022-01-20
  • 通讯作者: 孙健,E-mail:sunjianqy@126.com
  • 作者简介:张秀秀(1994-),女,在读硕士研究生,E-mail: zxxkq1229@163.com
  • 基金资助:
    山东省科技发展计划项目(2014GSF118108); 青岛市医疗卫生重点学科建设项目资助

Preparation and property of digital drug-loaded chlorhexidine gluconate PLA/nHA composite scaffold

ZHANG Xiu-xiu1,2, SUN Jian1,2,3,4, LI Ya-li5, LIU Yan-shan1,2, CHEN Li-qiang1,2, XU Yao-xiang1,2, XU Ze-xian1,2, MENG Kun1,2, SUN Ming1,2, ZHOU Dong-yang1,2, XU Dian1,2, GAO Xiao-han1,2, CHENG Li-di1,2   

  1. 1. Department of Oral and Maxillofacial Surgery, Qingdao University Affiliated Hospital. Qingdao 266003;
    2. School of Stomatology of Qingdao University. Qingdao 266003;
    3. Oral Digital Medicine and 3-Dimensional Printing Engineering Laboratory. Qingdao 266003;
    4. Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery. Qingdao 266003;
    5. Operating Room, Qingdao University Affiliated Hospital. Qingdao 266003, Shandong Province, China
  • Received:2021-06-28 Revised:2021-09-11 Online:2022-01-20 Published:2022-01-20

摘要: 目的: 探讨负载葡萄糖酸氯己定壳聚糖纳米球(CSn-CG)3D打印多孔聚乳酸/纳米羟基磷灰石(PLA/nHA)支架的理化性能、细胞相容性及抗菌活性。方法: 借助离子交联法,完成CSn(空白壳聚糖纳米球)与CSn-CG的制备,借助透射电镜(TEM)对纳米球形态进行观察。利用数字化设计3D打印技术,以PLA和nHA为原料,制备PLA/nHA支架。以浸泡法搭载CSn、CSn-CG,实验分为PLA/nHA组、PLA/nHA/CSn组、PLA/nHA/CSn-CG组3组。针对各组支架,通过扫描电镜(SEM)、X射线光电子能谱仪(XPS)、傅立叶红外光谱仪(FTIR)、X射线衍射(XRD)进行表征分析。体外释放实验评估支架的缓释性能,CCK-8法评估支架的生物相容性,琼脂扩散法检测支架的抗菌效果。采用 SPSS 25.0 软件包对所得数据进行统计学分析。结果: CSn-CG为大小均匀的纳米球。SEM下发现, 各组支架均为三维网状结构,孔径规则。体外释放结果表明,CG能够自支架内低速缓慢释放,用时30 d。CCK-8结果显示,PLA/nHA/CSn-CG组可促进小鼠前体成骨细胞(MC3T3-E1)增殖。体外抑菌实验结果显示,PLA/nHA/CSn-CG组具有明显的抑菌圈。结论: 3D打印的PLA/nHA/CSn-CG支架具有良好的理化性能、生物相容性和体外抗菌活性,为在组织工程骨中的进一步应用提供了依据。

关键词: 壳聚糖, 氯己定, 3D打印, 复合支架, 骨组织工程

Abstract: PURPOSE: To investigate the physical and chemical properties, cytocompatibility and antibacterial activity of 3D printed porous polylactic acid/nano-hydroxyapatite(PLA/nHA) scaffolds loaded with chlorhexidine gluconate chitosan nanoparticles (CSn-CG). METHODS: By means of ion crosslinking, CSn (blank chitosan nanospheres) and CSn-CG were prepared. The morphology of the nanospheres was observed under transmission electron microscopy(TEM). PLA/nHA scaffolds were prepared using PLA and nHA as raw materials by digital design and 3D printing technology, and the scaffolds were loaded with CSn and CSn-CG by immersion method. The experiment was divided into PLA/nHA group, PLA/nHA/CSn group and PLA/nHA/CSn-CG group. The scaffolds were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction(XRD). In vitro release test was used to evaluate the sustained-release performance of the scaffolds. CCK-8 method was used to evaluate the biocompatibility of scaffolds. The antibacterial effect of the stent was detected by AGAR diffusion method. SPSS 25.0 software package was used for data analysis. RESULTS: CSn-CG was homogeneous nanospheres. SEM showed that the scaffolds in each group were all three-dimensional network structure with regular pore size. The results of in vitro release showed that CG could be released slowly from the stent at low speed, and the time lasted for 30 days. CCK-8 results showed that PLA/nHA/CSn-CG promoted proliferation of MC3T3-E1. In vitro antibacterial experiment results showed that the experimental group had obvious antibacterial circle, which indicated that the scaffold had good antibacterial effect. CONCLUSIONS: The 3D-printed PLA/nHA/CSn-CG scaffold has good physical and chemical property, biocompatibility and antibacterial effect in vitro, which provides basis for further application of tissue engineered bone.

Key words: Chitosan, Chlorhexidine, 3D printing, Composite scaffolds, Bone tissue engineering

中图分类号: