[1] Wilde F, Winter K, Kletsch K, et al.Mandible reconstruction using patient-specific pre-bent reconstruction plates: comparison of standard and transfer key methods[J]. Int J Comput Assist Radiol Surg, 2015, 10(2): 129-140. [2] Osazuwa-Peters N, Arnold LD, Loux TM, et al.Factors associated with increased risk of suicide among survivors of head and neck cancer: a population-based analysis[J]. Oral Oncol, 2018, 81: 29-34. [3] Ng SL, Das S, Ting Y, et al. Benefits and biosafety of use of 3D-printing technology for titanium biomedical implants: a pilot study in the rabbit model[J]. Int J Molecul Sci, 2021, 22(16): 8480.e1-e19. [4] Li S, Li X, Hou W, et al.Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials[J]. Sci China Mater, 2018, 61(4): 525-536. [5] Wang Y, Zhang Y, Sculean A, et al.Macrophage behavior and interplay with gingival fibroblasts cultured on six commercially available titanium, zirconium, and titanium-zirconium dental implants[J]. Clin Oral Investig, 2019, 23(8): 3219-3227. [6] Domínguez-Trujillo C, Peón E, Chicardi E, et al.Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications[J]. Surf Coat Technol, 2018, 333: 158-162. [7] Wang C, Wang S, Yang Y, et al.Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant[J]. J Biomater Sci Polym Ed, 2018, 29(13): 1595-1611. [8] Murr LE, Gaytan SM, Medina F, et al.Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays[J]. Philos Trans A Math Phys Eng Sci, 2010, 368(1917): 1999-2032. [9] Wu M, Lee M, Wu C, et al.In vitro and in vivo comparison of bone growth characteristics in additive-manufactured porous titanium, nonporous titanium, and porous tantalum interbody cages[J]. Materials(Bsael), 2022, 15(10): 3670. [10] Wang Z, Zhang M, Liu Z, et al.Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration[J]. Mater Des, 2022, 218: 110721. [11] Chen H, Han Q, Wang C, et al.Porous scaffold design for additive manufacturing in orthopedics: a review[J]. Front Bioeng Biotechnol, 2020, 8: 609. [12] Abbasi N, Hamlet S, Love RM, et al.Porous scaffolds for bone regeneration[J]. J Sci Adv Mater Devices, 2020,5(1): 1-9. [13] Deb P, Deoghare AB, Borah A, et al.Scaffold development using biomaterials: a review[J]. Mater Today Proc, 2018, 5(5, Part 2): 12909-12919. [14] Ran Q, Yang W, Hu Y, et al.Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J]. J Mech Behav Biomed Mater, 2018, 84: 1-11. [15] Wang R, Ni S, Ma L, et al.Porous construction and surface modification of titanium-based materials for osteogenesis: a review[J]. Front Bioeng Biotechnol, 2022,10: 973297. [16] Zhang Y, Sun N, Zhu M, et al.The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis[J]. Biomater Adv, 2022,133: 112651. [17] Jäger M, Jennissen H, Dittrich F, et al.Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants[J]. Materials(Basel), 2017,10(11): 1302. [18] Ferraris S, Venturello A, Miola M, et al.Antibacterial and bioactive nanostructured titanium surfaces for bone integration[J]. Appl Surf Sci, 2014, 311: 279-291. [19] Bhosle SM, Tewari R, Friedrich CR.Dependence of nanotextured titanium orthopedic surfaces on electrolyte condition[J]. J Surf Eng Mater Adv Technol, 2016, 6(4):164-175. [20] Coathup MJ, Blunn GW, Mirhosseini N, et al.Controlled laser texturing of titanium results in reliable osteointegration[J]. J Orthop Res, 2017, 35(4): 820-828. [21] Quinn J, Mcfadden R, Chan C, et al.Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation[J]. iScience, 2020, 23(11): 101745. [22] Lee H, Dellatore SM, Miller WM, et al.Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. [23] Pan G, Sun S, Zhang W, et al.Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials[J]. J Am Chem Soc, 2016, 138(45): 15078-15086. [24] Cheng L, Sun X, Zhao X, et al.Surface biofunctional drug-load ed electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars[J]. Biomaterials, 2016, 83: 169-181. [25] Cheng W, Zeng X, Chen H, et al.Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine[J]. ACS Nano, 2019, 13(8): 8537-8565. [26] Chien C, Tsai W.Poly(dopamine)-assisted immobilization of arg-gly-asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells[J]. ACS Appl Mater Interfaces, 2013, 5(15): 6975-6983. [27] Li M, Liu X, Xu Z, et al.Dopamine modified organic-inorganic hybrid coating for antimicrobial and osteogenesis[J]. ACS Appl Mater Interfaces, 2016,8(49): 33972-33981. [28] Wang X, Lei X, Yu Y, et al.Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model[J]. Biomater Sci, 2021, 9(15): 5192-5208. [29] Zhu Y, Liu D, Wang X, et al.Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues[J]. J Mater Chem B, 2019, 7(12): 2019-2031. [30] Bose S, Tarafder S, Banerjee SS, et al.Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped beta-TCP[J]. Bone, 2011,48(6): 1282-1290. [31] Huynh V, Ngo NK, Golden TD.Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications[J]. Int J Biomater, 2019: 3806504. [32] Qin J, Yang D, Maher S, et al.Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration[J]. J Mater Chem B, 2018, 6(19): 3136-3144. [33] Zhou W, Peng X, Ma Y, et al.Two-staged time-dependent materials for the prevention of implant-related infections[J]. Acta Biomater, 2020,101: 128-140. [34] Ke D, Robertson SF, Dernell WS, et al.Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: an in vivo study in rat distal femoral defects[J]. ACS Appl Mater Interfaces, 2017, 9(31): 25731-25737. [35] Gao J, Wang M, Shi C, et al.A facile green synthesis of trace Si, Sr and F multi-doped hydroxyapatite with enhanced biocompatibility and osteoconduction[J]. Mater Lett, 2017,196: 406-409. [36] Sorushanova A, Delgado LM, Wu Z, et al.The collagen suprafamily: from biosynthesis to advanced biomaterial development[J]. Adv Mater, 2019, 31(1): e1801651. [37] Zhao Y, Bai L, Zhang Y, et al.Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis,and osteogenesis[J]. Biomaterials, 2022, 288: 121684. [38] Yilmaz E, Cakiroglu B, Gokce A, et al.Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition[J]. Mater Sci Eng C Mater Biol Appl, 2019, 101: 292-305. [39] Kitajima H, Hirota M, Iwai T, et al.Computational fluid simulation of fibrinogen around dental implant surfaces[J]. Int J Mol Sci, 2020, 21(2): 660. [40] Leighton Y, Weber B, Rosas E, et al.Autologous fibrin glue with collagen carrier during maxillary sinus lift procedure[J]. J Craniofac Surg, 2019,30(3):843-845. |