[1] Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264. [2] Jenkins RW, Barbie DA, Flaherty KT.Mechanisms of resistance to immune checkpoint inhibitors[J]. Br J Cancer, 2018, 118(1): 9-16. [3] Economopoulou P, Agelaki S, Perisanidis C, et al.The promise of immunotherapy in head and neck squamous cell carcinoma[J]. Ann Oncol, 2016, 27(9): 1675-1685. [4] Johnson DE, Burtness B, Leemans CR, et al.Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92-140. [5] Ferlay J, Colombet M, Soerjomataram I, et al.Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019,144(8): 1941-1953. [6] Bray F, Ferlay J, Soerjomataram I, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [7] Micalizzi DS, Ebright RY, Haber DA, et al.Translational regulation of cancer metastasis[J]. Cancer Res, 2021, 81(3): 517-524. [8] Hinshaw DC, Shevde LA.The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566. [9] Moskovitz J, Moy J, Ferris RL.Immunotherapy for head and neck squamous cell carcinoma[J]. Curr Oncol Rep, 2018, 20(2): 22-28. [10] Ferris RL.Immunology and immunotherapy of head and neck cancer[J]. J Clin Oncol, 2015, 33(29): 3293-3304. [11] Billingham RE, Brent L, Medawar PB.Quantitative studies on tissue transplantation immunity.Ⅱ. the origin, strength and duration of actively and adoptively acquired immunity[J]. Proc R Soc Lond B Biol Sci, 1954, 143(910): 58-80. [12] Mitchison NA.Studies on the immunological response to foreign tumor transplants in the mouse.Ⅰ. the role of lymph node cells in conferring immunity by adoptive transfer[J]. J Exp Med, 1955, 102(2): 157-177. [13] Mttchison NA, Dube OL.Studies on the immunological response to foreign tumor transplants in the mouse.Ⅱ. the relation between hemagglutinating antibody and graft resistance in the normal mouse and mice pretreated with tissue preparations[J]. J Exp Med, 1955, 102(2): 179-197. [14] Andreini P, Drasher ML, Mitchison NA.Studies on the immunological response to foreign tumor transplants in the mouse. III. changes in the weight, and content of nucleic acids and protein, of host lymphoid tissues[J]. J Exp Med, 1955, 102(2): 199-204. [15] Eberlein TJ, Rosenstein M, Rosenberg SA.Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2[J]. J Exp Med, 1982, 156(2): 385-397. [16] Rosenberg SA, Spiess P, Lafreniere R.A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes[J]. Science, 1986, 233(4770): 1318-1321. [17] Neelapu SS, Locke FL, Bartlett NL, et al.Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]. N Engl J Med, 2017, 377(26): 2531-2544. [18] Wang M, Munoz J, Goy A, et al.KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma[J]. N Engl J Med, 2020, 382(14): 1331-1342. [19] Sideras K, Biermann K, Yap K, et al.Tumor cell expression of immune inhibitory molecules and tumor-infiltrating lymphocyte count predict cancer-specific survival in pancreatic and ampullary cancer[J]. Int J Cancer, 2017,141(3): 572-582. [20] Stanton SE, Disis ML.Clinical significance of tumor-infiltrating lymphocytes in breast cancer[J]. J Immunother Cancer, 2016, 4: 59-66. [21] Jiang Y, Lo AWI, Wong A, et al.Prognostic significance of tumor-infiltrating immune cells and PD-L1 expression in esophageal squamous cell carcinoma[J]. Oncotarget, 2017, 8(18): 30175-30189. [22] Almangush A, Leivo I, Mäkitie AA.Overall assessment of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma: time to take notice[J]. Acta Otolaryngol, 2020, 140(3): 246-248. [23] Chapuis AG, Roberts IM, Thompson JA, et al.T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte Antigen-4 blockade results in long-term cell persistence and durable tumor regression[J]. J Clin Oncol, 2016, 34(31): 3787-3795. [24] Wu R, Forget MA, Chacon J, et al.Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook[J]. Cancer J, 2012, 18(2): 160-175. [25] Piersma SJ, Jordanova ES, van Poelgeest MI, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer[J]. Cancer Res, 2007, 67(1): 354-361. [26] Brambilla E, Le Teuff G, Marguet S, et al.Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer[J]. J Clin Oncol, 2016, 34(11): 1223-1230. [27] Cheng LE, Ohlén C, Nelson BH, et al.Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death[J]. Proc Natl Acad Sci USA, 2002, 99(5): 3001-3006. [28] Grimm EA, Mazumder A, Zhang HZ, et al.Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes[J]. J Exp Med, 1982, 155(6): 1823-1841. [29] Ward MJ, Thirdborough SM, Mellows T, et al.Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer[J]. Br J Cancer, 2014, 110(2): 489-500. [30] Xiao Y, Li H, Mao L, et al.CD103+ T and dendritic cells indicate a favorable prognosis in oral cancer[J]. J Dent Res, 2019, 98(13): 1480-1487. [31] Duhen T, Duhen R, Montler R, et al.Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors[J]. Nat Commun, 2018, 9(1): 2724. [32] Watermann C, Pasternack H, Idel C, et al.Recurrent HNSCC harbor an immunosuppressive tumor immune microenvironment suggesting successful tumor immune evasion[J]. Clin Cancer Res, 2021, 27(2): 632-644. [33] Canning M, Guo G, Yu M, et al.Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy[J]. Front Cell Dev Biol, 2019, 7: 52-70. [34] Peltanova B, Raudenska M, Masarik M.Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review[J]. Mol Cancer, 2019, 18(1): 63-87. [35] Whiteside TL.The tumor microenvironment and its role in promoting tumor growth[J]. Oncogene, 2008, 27(45): 5904-5912. [36] Guedan S, Ruella M, June CH.Emerging cellular therapies for cancer[J]. Annu Rev Immunol, 2019, 37: 145-171. [37] Park YP, Jin L, Bennett KB, et al.CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma[J]. Oral Oncol, 2018, 78: 145-150. [38] Mei Z, Zhang K, Lam AK, et al.MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma[J]. Cancer Med, 2020, 9(2): 640-652. [39] Larcombe-Young D, Papa S, Maher J.PanErbB-targeted CAR T-cell immunotherapy of head and neck cancer[J]. Expert Opin Biol Ther, 2020, 20(9): 965-970. [40] Davies DM, Foster J, Van Der Stegen SJ, et al. Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells[J]. Mol Med, 2012, 18(1): 565-576. [41] Brudno JN, Kochenderfer JN.Toxicities of chimeric antigen receptor T cells: recognition and management[J]. Blood, 2016, 127(26): 3321-3330. [42] Rubin DB, Danish HH, Ali AB, et al.Neurological toxicities associated with chimeric antigen receptor T-cell therapy[J]. Brain, 2019, 142(5): 1334-1348. [43] Belin C, Devic P, Ayrignac X, et al.Description of neurotoxicity in a series of patients treated with CAR T-cell therapy[J]. Sci Rep, 2020, 10(1): 18997. [44] Kavunja HW, Lang S, Sungsuwan S, et al.Delivery of foreign cytotoxic T lymphocyte epitopes to tumor tissues for effective antitumor immunotherapy against pre-established solid tumors in mice[J]. Cancer Immunol Immunother, 2017, 66(4): 451-460. [45] Fesnak AD, June CH, Levine BL.Engineered T cells: the promise and challenges of cancer immunotherapy[J]. Nat Rev Cancer, 2016, 16(9): 566-581. [46] Chandran SS, Klebanoff CA.T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance[J]. Immunol Rev, 2019, 290(1): 127-147. [47] Tsimberidou AM, Van Morris K, Vo HH, et al.T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors[J]. J Hematol Oncol, 2021,14(1): 102-124. [48] Robbins PF, Morgan RA, Feldman SA, et al.Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1[J]. J Clin Oncol, 2011, 29(7): 917-924. [49] Robbins PF, Kassim SH, Tran TL, et al.A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response[J]. Clin Cancer Res, 2015, 21(5): 1019-1027. [50] D'Angelo SP, Melchiori L, Merchant MS, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma[J]. Cancer Discov, 2018, 8(8): 944-957. [51] Rapoport AP, Stadtmauer EA, Binder-Scholl GK, et al.NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma[J]. Nat Med, 2015, 21(8): 914-921. [52] Wei SC, Duffy CR, Allison JP.Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8(9): 1069-1086. [53] Stromnes IM, Schmitt TM, Chapuis AG, et al.Re-adapting T cells for cancer therapy: from mouse models to clinical trials[J]. Immunol Rev, 2014, 257(1): 145-164. [54] Sato T, Vries RG, Snippert HJ, et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. [55] Fujii M, Matano M, Toshimitsu K, et al.Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition[J]. Cell Stem Cell, 2018, 23(6): 787-793. [56] Ootani A, Li X, Sangiorgi E, et al.Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche[J]. Nat Med, 2009, 15(6): 701-706. [57] Drost J, Clevers H.Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7): 407-418. [58] Li X, Nadauld L, Ootani A, et al.Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture[J]. Nat Med, 2014, 20(7): 769-777. [59] Crespo M, Vilar E, Tsai SY, et al.Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing[J]. Nat Med, 2017, 23(7): 878-884. [60] Drost J, van Boxtel R, Blokzijl F, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer[J]. Science, 2017, 358(6360): 234-238. [61] Matano M, Date S, Shimokawa M, et al.Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015, 21(3): 256-262. [62] Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550): 43-47. [63] Schnalzger TE, de Groot MH, Zhang C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids[J]. EMBO J, 2019, 38(12): e100928. [64] Bar-Ephraim YE, Kretzschmar K, Clevers H.Organoids in immunological research[J]. Nat Rev Immunol, 2020, 20(5): 279-293. [65] Dijkstra KK, Cattaneo CM, Weeber F, et al.Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586-1598. [66] Cattaneo CM, Dijkstra KK, Fanchi LF, et al.Tumor organoid-T-cell coculture systems[J]. Nat Protoc, 2020, 15(1): 15-39. |