中国口腔颌面外科杂志 ›› 2024, Vol. 22 ›› Issue (1): 84-91.doi: 10.19438/j.cjoms.2024.01.015
韩林孜1,2, 周建华1, 董磊1,2, 赵璐3,*, 袁荣涛1,*
收稿日期:
2023-02-15
修回日期:
2023-04-05
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
袁荣涛,E-mail: yuanrongtao@163.com;赵璐,E-mail: zhaolu@qdu.edu.cn。*共同通信作者
基金资助:
HAN Lin-zi1,2, ZHOU Jian-hua1, DONG lei1,2, ZHAO Lu3, YUAN Rong-tao1
Received:
2023-02-15
Revised:
2023-04-05
Online:
2024-01-20
Published:
2024-02-05
摘要: 口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)是全球第六大常见恶性肿瘤,其发生、发展与肿瘤微环境(tumor microenvironment, TME)密切相关。肿瘤相关成纤维细胞(cancer-associated fibroblasts, CAFs)作为TME中重要的组成成分,通过分泌多种生长因子、细胞因子、炎性因子、外泌体等参与上皮-间充质转化、重塑细胞外基质,激活多种生物学途径,对OSCC的发生、发展产生影响。本文对CAFs的来源、特点、异质性以及CAFs对OSCC的生物学行为的影响做一综述。
中图分类号:
韩林孜, 周建华, 董磊, 赵璐, 袁荣涛. 肿瘤相关成纤维细胞对口腔鳞状细胞癌生物学行为影响的研究进展[J]. 中国口腔颌面外科杂志, 2024, 22(1): 84-91.
HAN Lin-zi, ZHOU Jian-hua, DONG lei, ZHAO Lu, YUAN Rong-tao. Research progress on the effect of cancer-associated fibroblasts on biological behavior of oral squamous cell carcinoma[J]. China J Oral Maxillofac Surg, 2024, 22(1): 84-91.
[1] Bagan J, Sarrion G, Jimenez Y.Oral cancer: clinical features[J]. Oral Oncol, 2010, 46(6): 414-417. [2] Liu C, Wang M, Zhang H, et al.Tumor microenvironment and immunotherapy of oral cancer[J]. Eur J Med Res, 2022, 27(1): 198. [3] Warnakulasuriya S, Kerr A.Oral cancer screening: past, present, and future[J]. J Dent Res, 2021, 100(12): 1313-1320. [4] Junttila M, De Sauvage F.Influence of tumour micro-environment heterogeneity on therapeutic response[J]. Nature, 2013, 501(7467): 346-354. [5] Sahai E, Astsaturov I, Cukierman E, et al.A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186. [6] Mishra P, Mishra P, Humeniuk R, et al.Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells[J]. Cancer Res, 2008, 68(11): 4331-4339. [7] Ansems M, Span P.The tumor microenvironment and radiotherapy response: a central role for cancer-associated fibroblasts[J]. Clin Transl Radiat Oncol, 2020, 22: 90-97. [8] Zhang D, Song Y, Li D, et al.Cancer-associated fibroblasts promote tumor progression by lncRNA-mediated RUNX2/GDF10 signaling in oral squamous cell carcinoma[J]. Mol Oncol, 2022, 16(3): 780-794. [9] Chen X, Song E.Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115. [10] Kabashima-Niibe A, Higuchi H, Takaishi H, et al.Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells[J]. Cancer Sci, 2013, 104(2): 157-164. [11] Friedman G, Levi-Galibov O, David E, et al.Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4 and PDPN CAFs to clinical outcome[J]. Nat Cancer, 2020, 1(7): 692-708. [12] Quante M, Tu S, Tomita H, et al.Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, 2011, 19(2): 257-272. [13] Barcellos-De-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1[J]. Stem Cells, 2016, 34(10): 2536-2547. [14] Iwano M, Plieth D, Danoff T, et al.Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. J Clin Invest, 2002, 110(3): 341-350. [15] Wawro M, Chojnacka K, Wieczorek-Szukała K, et al.Invasive colon cancer cells induce transdifferentiation of endothelium to cancer-associated fibroblasts through microtubules enriched in tubulin-β3[J]. Int J Mol Sci, 2018, 20(1): 53-70. [16] Peng Y, Li Z, Yang P, et al.Direct contacts with colon cancer cells regulate the differentiation of bone marrow mesenchymal stem cells into tumor associated fibroblasts[J]. Biochem Biophys Res Commun, 2014, 451(1): 68-73. [17] Bielczyk-Maczynska E.White adipocyte plasticity in physiology and disease[J]. Cells, 2019, 8(12): 1507-1520. [18] Ning X, Zhang H, Wang C, et al.Exosomes released by gastric cancer cells induce transition of pericytes into cancer-associated fibroblasts[J]. Med Sci Monit, 2018, 24: 2350-2359. [19] Huang X, He C, Hua X, et al.Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma[J]. Clin Transl Med, 2020, 10(2): e41. [20] Jotzu C, Alt E, Welte G, et al.Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors[J]. Cell Oncol (Dordr), 2011, 34(1): 55-67. [21] Hosaka K, Yang Y, Seki T, et al.Pericyte-fibroblast transition promotes tumor growth and metastasis[J]. Proc Natl Acad Sci USA, 2016, 113(38): E5618-E5627. [22] Cully M.Tumour microenvironment: fibroblast subtype provides niche for cancer stem cells[J]. Nat Rev Cancer, 2018, 18(3): 136. [23] Nurmik M, Ullmann P, Rodriguez F, et al.In search of definitions: cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4): 895-905. [24] Lebleu V, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact[J]. Dis Model Mech, 2018, 11(4): ddm029447. [25] Puré E, Blomberg R.Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics[J]. Oncogene, 2018, 37(32): 4343-4357. [26] Mezawa Y, Orimo A.The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas[J]. Cell Tissue Res, 2016, 365(3): 675-689. [27] Liu T, Han C, Wang S, et al.Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1): 86-100. [28] Long K, Tooker G, Tooker E, et al.IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma[J]. Mol Cancer Ther, 2017, 16(9): 1898-1908. [29] Erdogan B, Webb D.Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis[J]. Biochem Soc Trans, 2017, 45(1): 229-236. [30] De Jaeghere E, Denys H, De Wever O.Fibroblasts fuel immune escape in the tumor microenvironment[J]. Trends Cancer, 2019, 5(11): 704-723. [31] Yang F, Ning Z, Ma L, et al.Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts[J]. Mol Cancer, 2017, 16(1): 148-157. [32] Wang Z, Zhang H, Zhai Y, et al.Single-cell profiling reveals heterogeneity of primary and lymph node metastatic tumors and immune cell populations and discovers important prognostic significance of CCDC43 in oral squamous cell carcinoma[J]. Front Immunol, 2022, 13: 843322. [33] Patel A, Vipparthi K, Thatikonda V, et al.A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma[J]. Oncogenesis, 2018, 7(10): 78-92. [34] Costea D, Hills A, Osman A, et al.Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma[J]. Cancer Res, 2013, 73(13): 3888-3901. [35] Yu C, Liu Y, Huang D, et al.TGF-β1 mediates epithelial to mesenchymal transition [36] Xing F, Saidou J, Watabe K.Cancer associated fibroblasts (CAFs) in tumor microenvironment[J]. Front Biosci (Landmark Ed), 2010, 15(1): 166-179. [37] Wang Y, Jing Y, Ding L, et al.Epiregulin reprograms cancer-associated fibroblasts and facilitates oral squamous cell carcinoma invasion [38] Wu F, Yang J, Liu J, et al.Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 218-252. [39] Fotsitzoudis C, Koulouridi A, Messaritakis I, et al.Cancer-associated fibroblasts: the origin, biological characteristics and role in cancer-a glance on colorectal cancer[J]. Cancers(Basel), 2022, 14(18): 4394-4420. [40] Jiang X, Huang Z, Sun X, et al.CCL18-NIR1 promotes oral cancer cell growth and metastasis by activating the JAK2/STAT3 signaling pathway[J]. BMC Cancer, 2020, 20(1): 632-645. [41] Wheeler S, Shi H, Lin F, et al.Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models[J]. Head Neck, 2014, 36(3): 385-392. [42] Bienkowska K, Hanley C, Thomas G.Cancer-associated fibroblasts in oral cancer: a current perspective on function and potential for therapeutic targeting[J]. Front Oral Health, 2021, 2: 686337. [43] Kalluri R.The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. [44] Biffi G, Oni T, Spielman B, et al.IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9(2): 282-301. [45] Torphy R, Wang Z, True-Yasaki A, et al. Stromal content is correlated with tissue site, contrast retention,survival in pancreatic adenocarcinoma[J]. JCO Precis Oncol, 2018, 2018: PO.17.00121. [46] Özdemir B, Pentcheva-Hoang T, Carstens J, et al.Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2015, 28(6): 831-833. [47] Van Cutsem E, Tempero M, Sigal D, et al.Randomized phase Ⅲ trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194. [48] De Palma M, Biziato D, Petrova T.Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457-474. [49] Mrgritescu C, Pirici D, Sting A, et al.VEGF expression and angiogenesis in oral squamous cell carcinoma: an immunohistochemical and morphometric study[J]. Clin Exp Med, 2010, 10(4): 209-214. [50] Mirkeshavarz M, Ganjibakhsh M, Aminishakib P, et al.Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(10): 131-136. [51] Nagasaki T, Hara M, Nakanishi H, et al.Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction[J]. Br J Cancer, 2014, 110(2): 469-478. [52] Kayamori K, Katsube K, Sakamoto K, et al.NOTCH3 Is induced in cancer-associated fibroblasts and promotes angiogenesis in oral squamous cell carcinoma[J]. PLoS One, 2016, 11(4): e0154112. [53] Heichler C, Scheibe K, Schmied A, et al.STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7): 1269-1282. [54] Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al.Role of matrix metalloproteinases in angiogenesis and cancer[J]. Front Oncol, 2019, 9: 1370. [55] Kalluri R, Zeisberg M.Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5): 392-401. [56] Oskarsson T, Massagué J.Extracellular matrix players in metastatic niches[J]. EMBO J, 2012, 31(2): 254-256. [57] Tomasek J, Gabbiani G, Hinz B, et al.Myofibroblasts and mechano-regulation of connective tissue remodelling[J]. Nat Rev Mol Cell Biol, 2002, 3(5): 349-363. [58] Kato K, Miyazawa H, Kawashiri S, et al.Tumour: fibroblast interactions promote invadopodia-mediated migration and invasion in oral squamous cell carcinoma[J]. J Oncol, 2022: 5277440. [59] Lee S, Hong J, Kim J, et al.Cancer-associated fibroblasts activated by miR-196a promote the migration and invasion of lung cancer cells[J]. Cancer Lett, 2021, 508: 92-103. [60] Hu D, Li Z, Zheng B, et al.Cancer-associated fibroblasts in breast cancer: challenges and opportunities[J]. Cancer Commun (Lond), 2022, 42(5): 401-434. [61] Grunberg N, Pevsner-Fischer M, Goshen-Lago T, et al.Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes [62] Pelon F, Bourachot B, Kieffer Y, et al.Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms[J]. Nat Commun, 2020, 11(1): 404-423. [63] Yu Y, Xiao C, Tan L, et al.Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling[J]. Br J Cancer, 2014, 110(3): 724-732. [64] Haga K, Yamazaki M, Maruyama S, et al.Crosstalk between oral squamous cell carcinoma cells and cancer-associated fibroblasts [65] Fullár A, Kovalszky I, Bitsche M, et al.Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma[J]. Exp Cell Res, 2012, 318(13): 1517-1527. [66] Elmusrati A, Pilborough A, Khurram S, et al.Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma[J]. Br J Cancer, 2017, 117(6): 867-875. [67] Yazdani S, Bansal R, Prakash J.Drug targeting to myofibroblasts: implications for fibrosis and cancer[J]. Adv Drug Del Rev, 2017, 121: 101-116. [68] Sun L, Xu K, Cui J, et al.Cancer-associated fibroblast derived exosomal miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4): 1319-1328. [69] Bagordakis E, Sawazaki-Calone I, Macedo C, et al.Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures[J]. Tumour Biol, 2016, 37(7): 9045-9057. [70] Mantovani A, Marchesi F, Malesci A, et al.Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. [71] Arango Duque G, Descoteaux A.Macrophage cytokines: involvement in immunity and infectious diseases[J]. Front Immunol, 2014, 5: 491-502. [72] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al.Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. [73] Herrera M, Herrera A, Domínguez G, et al.Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients[J]. Cancer Sci, 2013, 104(4): 437-444. [74] Takahashi H, Sakakura K, Kudo T, et al.Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages[J]. Oncotarget, 2017, 8(5): 8633-8647. [75] Ueshima E, Fujimori M, Kodama H, et al.Macrophage-secreted TGF-β contributes to fibroblast activation and ureteral stricture after ablation injury[J]. Am J Physiol Renal Physiol, 2019, 317(7): F52-F64. [76] Melaiu O, Lucarini V, Cifaldi L, et al.Influence of the tumor microenvironment on NK cell function in solid tumors[J]. Front Immunol, 2019, 10: 3038. [77] Ziani L, Safta-Saadoun T, Gourbeix J, et al.Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion[J]. Oncotarget, 2017, 8(12): 19780-19794. [78] Huang Y, Chang C, Kuo Y, et al.Cancer-associated fibroblast-derived interleukin-1β activates protumor C-C motif chemokine ligand 22 signaling in head and neck cancer[J]. Cancer Sci, 2019, 110(9): 2783-2793. [79] Elyada E, Bolisetty M, Laise P, et al.Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. [80] Dou D, Ren X, Han M, et al.Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer [81] Papadopoulou A, Kletsas D.Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells [82] Hellevik T, Pettersen I, Berg V, et al. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced[J]. Radiat Oncol, 2012(1), 7: 59-73. [83] Kamochi N, Nakashima M, Aoki S, et al.Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction[J]. Cancer Sci, 2008, 99(12): 2417-2427. [84] Büttner C, Skupin A, Reimann T, et al.Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4[J]. Am J Respir Cell Mol Biol, 1997, 17(3): 315-325. [85] Valkenburg K, De Groot A, Pienta K.Targeting the tumour stroma to improve cancer therapy[J]. Nat Rev Clin Oncol, 2018, 15(6): 366-381. [86] Peiris-Pagès M, Sotgia F, Lisanti M.Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells[J]. Oncotarget, 2015, 6(13): 10728-10745. [87] Lotti F, Jarrar A, Pai R, et al.Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A[J]. J Exp Med, 2013, 210(13): 2851-2872. [88] Schmitz S, Bindea G, Albu R, et al.Cetuximab promotes epithelial to mesenchymal transition and cancer associated fibroblasts in patients with head and neck cancer[J]. Oncotarget, 2015, 6(33): 34288-34299. [89] Jamieson E, Lippard S.Structure, recognition, and processing of cisplatin-DNA adducts[J]. Chem Rev, 1999, 99(9): 2467-2498. [90] Qin X, Guo H, Wang X, et al.Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5[J]. Genome Biol, 2019, 20(1): 12-33. [91] Zhang D, Ding L, Li Y, et al.Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance [92] Jones D.Measuring midkine: the utility of midkine as a biomarker in cancer and other diseases[J]. Br J Pharmacol, 2014, 171(12): 2925-2939. [93] Liu L, Ning S, Fu S, et al.Effects of lncRNA ANRIL on proliferation and apoptosis of oral squamous cell carcinoma cells by regulating TGF-β/Smad pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(14): 6194-6201. [94] Jagadeeshan S, Prasad M, Ortiz-Cuaran S, et al.Adaptive responses to monotherapy in head and neck cancer: interventions for rationale-based therapeutic combinations[J]. Trends Cancer, 2019, 5(6): 365-390. [95] Ayuso J, Vitek R, Swick A, et al.Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells[J]. Sci Rep, 2019, 9(1): 12480. [96] Yegodayev K, Novoplansky O, Golden A, et al.TGF-beta-activated cancer-associated fibroblasts limit cetuximab efficacy in preclinical models of head and neck cancer[J]. Cancers, 2020, 12(2): 339-356. [97] Monteran L, Erez N.The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J]. Front Immunol, 2019, 10: 1835. [98] Sun C, Mezzadra R, Schumacher T.Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. [99] Hosein A, Huang H, Wang Z, et al.Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution[J]. JCI Insight, 2019, 5(16): e129212. [100] Takahashi H, Sakakura K, Kawabata-Iwakawa R, et al.Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma[J]. Cancer Immunol Immunother, 2015, 64(11): 1407-1417. [101] Chakravarthy A, Khan L, Bensler N, et al.TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure[J]. Nat Commun, 2018, 9(1): 4692. [102] Mariathasan S, Turley S, Nickles D, et al.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. [103] Öhlund D, Elyada E, Tuveson D.Fibroblast heterogeneity in the cancer wound[J]. J Exp Med, 2014, 211(8): 1503-1523. |
[1] | 孙晓梅, 段晓峰. 去泛素化酶在口腔鳞癌中的研究进展[J]. 中国口腔颌面外科杂志, 2024, 22(3): 294-299. |
[2] | 李锦存, 翟堃, 胡晨, 刘絮影, 马兴平, 马坚. 整合WGNCA和PPI网络鉴定口腔鳞状细胞癌的关键基因[J]. 中国口腔颌面外科杂志, 2024, 22(2): 128-136. |
[3] | 周鑫霞,刘敬浩,甘桂芳,陈福祥. 鞘氨醇-1-磷酸受体4在口腔鳞状细胞癌中的表达及生物学功能[J]. 中国口腔颌面外科杂志, 2024, 22(1): 10-15. |
[4] | 李贵忠, 李洁莹, 周凯, 孟宇翔, 王可心, 葛胜优, 宋凯, 冯元勇, 陶月琴, 展晓红, 尚伟. 淋巴结外扩展对口腔鳞癌患者TNM分期及生存预后的影响[J]. 中国口腔颌面外科杂志, 2023, 21(4): 377-383. |
[5] | 韩林孜, 周建华, 赵谦, 董磊, 陈正岗, 邱建忠, 袁荣涛. 肿瘤相关成纤维细胞对头颈部鳞状细胞癌肿瘤浸润免疫细胞的调控作用及机制探讨[J]. 中国口腔颌面外科杂志, 2023, 21(2): 119-124. |
[6] | 热孜万姑丽·亚森, 买热拍提·买明, 李晨曦, 龚忠诚. 牙龈卟啉单胞菌促进口腔鳞状细胞癌进展的作用及机制研究进展[J]. 中国口腔颌面外科杂志, 2023, 21(2): 186-190. |
[7] | 兰嵘, 阮敏, 韩楠男, 王凤. 左下种植修复后发生植体周围鳞状细胞癌1例报告[J]. 中国口腔颌面外科杂志, 2023, 21(2): 203-205. |
[8] | 苏姿尚, 崔文丽, 张梦云, 姚志涛. 口腔鳞状细胞癌患者颈部淋巴结特征与预后的关系[J]. 中国口腔颌面外科杂志, 2023, 21(1): 41-48. |
[9] | 李明彧, 马海龙, 杨溪, 张志愿. 癌相关成纤维细胞在肿瘤葡萄糖代谢中的作用[J]. 中国口腔颌面外科杂志, 2021, 19(1): 70-75. |
[10] | 陈秀敏, 刘族志, 林建能. 血浆miR-136-5p表达水平对口腔鳞状细胞癌患者预后预测的价值[J]. 中国口腔颌面外科杂志, 2020, 18(6): 526-530. |
[11] | 梁思源, 赵铜超, 周知航, 琚梧桐, 刘莹, 张志愿, 钟来平. 可利霉素对口腔鳞癌细胞生物学活性的影响[J]. 中国口腔颌面外科杂志, 2020, 18(4): 308-313. |
[12] | 王锋, 李翔, 王宇帆, 杨宏宇. 环状RNA在口腔鳞状细胞癌中的作用探讨[J]. 中国口腔颌面外科杂志, 2019, 17(6): 496-502. |
[13] | 李翔, 苏文, 张寒雨, 张璧茹, 杨宏宇. 沉默环状RNA hsa_circ_0006677 表达对口腔鳞状细胞癌迁移及侵袭能力的影响[J]. 中国口腔颌面外科杂志, 2019, 17(4): 289-294. |
[14] | 朱东旺, 孙文文, 赵铜超, 钟来平, 张陈平, 张志愿. 人口腔鳞状细胞癌细胞系TSCC2016的建立及生物学特性分析[J]. 中国口腔颌面外科杂志, 2019, 17(3): 204-209. |
[15] | 付永, 马捷, 刘莹, 谈亦然, 琚梧桐, 孙文文, 赵铜超, 王旻, 王丽珍, 李江, 张陈平, 张志愿, 钟来平. TP53截断突变作为局部晚期口腔鳞癌诱导化疗预测性生物标志物的探讨[J]. 中国口腔颌面外科杂志, 2018, 16(4): 322-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||