中国口腔颌面外科杂志 ›› 2023, Vol. 21 ›› Issue (3): 279-285.doi: 10.19438/j.cjoms.2023.03.013
张筠, 代庆刚, 吴轶群
收稿日期:
2022-04-18
修回日期:
2022-07-29
出版日期:
2023-05-20
发布日期:
2023-08-16
通讯作者:
吴轶群,E-mail: yiqunwu@hotmail.com
作者简介:
张筠(1998-),女,在读博士研究生,E-mail: zy01100821@163.com
基金资助:
ZHANG Yun, DAI Qing-gang, WU Yi-qun
Received:
2022-04-18
Revised:
2022-07-29
Online:
2023-05-20
Published:
2023-08-16
摘要: 中心粒周蛋白(pericentrin, PCNT)是一种中心体周围蛋白,在有丝分裂、减数分裂等多个生物学行为中发挥着重要作用。PCNT突变可导致多种牙颌面部畸形,包括严重颅颌面骨发育畸形和牙发育异常。虽然临床症状多有报道,但是PCNT在口腔领域的相关研究还十分有限。为了更好理解PCNT相关颅颌面畸形的临床表现及发病机制,本文综述了近年来发表的PCNT的功能和致病机制相关的研究进展,为以后开展PCNT在牙-牙周组织及颅颌面骨发育中的功能研究提供参考。
中图分类号:
张筠, 代庆刚, 吴轶群. 中心粒周蛋白在牙颌面及相关发育畸形中的作用及机制研究进展[J]. 中国口腔颌面外科杂志, 2023, 21(3): 279-285.
ZHANG Yun, DAI Qing-gang, WU Yi-qun. Advance in the role and mechanism of pericentrin in development dento-maxillofacial deformities and other malformations[J]. China J Oral Maxillofac Surg, 2023, 21(3): 279-285.
[1] Nguyen TH, Nguyen NL, Vu CD, et al.Identification of three novel mutations in PCNT in vietnamese patients with microcephalic osteodysplastic primordial dwarfism type Ⅱ[J]. Genes Genomics, 2021, 43(2):115-121. [2] Aoyama KI, Kimura M, Yamazaki H, et al.New PCNT candidate missense variant in a patient with oral and maxillofacial osteodysplasia: a case report[J]. BMC Med Genet, 2019, 20(1): 126-136. [3] Kantaputra P, Tanpaiboon P, Porntaveetus T, et al.The smallest teeth in the world are caused by mutations in the PCNT gene[J]. Am J Med Genet A, 2011, 155A(6): 1398-1403. [4] Abdel-Salam GMH, Sayed ISM, Afifi HH, et al.Microcephalic osteodysplastic primordial dwarfism type Ⅱ: additional nine patients with implications on phenotype and genotype correlation[J]. Am J Med Genet A, 2020, 182(6): 1407-1420. [5] Dehghan Tezerjani M, Vahidi Mehrjardi MY, Hozhabri H, et al.A novel PCNT frame shift variant (c.7511delA) causing osteodysplastic primordial dwarfism of majewski type 2 (MOPD II)[J]. Front Pediatr, 2020, 8: 340-347. [6] Bober MB, Jackson AP.Microcephalic osteodysplastic primordial dwarfism, type II: a clinical review[J]. Curr Osteoporos Rep, 2017, 15(2): 61-69. [7] Klingseisen A, Jackson AP.Mechanisms and pathways of growth failure in primordial dwarfism[J]. Genes Dev, 2011, 25(19): 2011-2024. [8] Rauch A, Thiel CT, Schindler D, et al.Mutations in the pericentrin (PCNT) gene cause primordial dwarfism[J]. Science, 2008, 319(5864): 816-819. [9] Waich S, Janecke AR, Parson W, et al.Novel PCNT variants in MOPDII with attenuated growth restriction and pachygyria[J]. Clin Genet, 2020, 98(3): 282-287. [10] Liu H, Tao N, Wang Y, et al.A novel homozygous mutation of the PCNT gene in a Chinese patient with microcephalic osteodysplastic primordial dwarfism typeⅡ[J]. Mol Genet Genomic Med, 2021, 9(9): e1761. [11] Rauch A.The shortest of the short: pericentrin mutations and beyond[J]. Best Pract Res Clin Endocrinol Metab, 2011, 25(1): 125-130. [12] Lin TC, Neuner A, Schiebel E.Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence[J]. Trends Cell Biol, 2015, 25(5): 296-307. [13] Falk N, Kessler K, Schramm SF, et al. Functional analyses of pericentrin and Syne-2 interaction in ciliogenesis[J]. J Cell Sci, 2018, 131(16): jcs218487. [14] 梁前进. 细胞器不依赖于DNA的复制—中心体自主复制解读[J].科学通报, 2017, 62(13): 1333-1345. Liang QJ.Organellic replication that is independent of DNA: unscrambling the autonomous centrosomal replication[J].Chinese Science Bulletin, 2017, 62(13): 1333-1345. [15] Cavanaugh A, Jaspersen S.Big lessons from little yeast: budding and fission yeast centrosome structure, duplication, and function[J]. Annual review of genetics, 2017, 51: 361-383. [16] Mühlhans J, Brandstätter JH, Giessl A.The centrosomal protein pericentrin identified at the basal body complex of the connecting cilium in mouse photoreceptors[J]. PLoS One, 2011, 6(10): e26496. [17] Chen CT, Hehnly H, Yu Q, et al.A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation[J]. Curr Biol, 2014, 24(19): 2327-2334. [18] Joukov V, De Nicolo A.The centrosome and the primary cilium: the Yin and Yang of a hybrid organelle[J]. Cells, 2019, 8(7):701-747. [19] Kuriyama R, Fisher CR. A novel mitosis-specific Cep215 domain interacts with Cep192 and phosphorylated Aurora A for organization of spindle poles[J]. J Cell Sci, 2020, 133(24): jcs240267. [20] Chinen T, Yamazaki K, Hashimoto K, et al.Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly[J]. J Cell Biol, 2021, 220(2): e202006085. [21] Tischer T, Yang J, Barford D. The APC/C targets the Cep152-Cep63 complex at the centrosome to regulate mitotic spindle assembly[J]. J Cell Sci, 2022, 135(2): jcs259273. [22] Kim J, Lee K, Rhee K.PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit[J]. Nat Commun, 2015, 6: 10076. [23] Jung GI, Rhee K.Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase[J]. Cell Cycle, 2021, 20(15):1500-1517. [24] Lawo S, Hasegan M, Gupta GD, et al.Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material[J]. Nat Cell Biol, 2012, 14(11): 1148-1158. [25] Jiang X, Ho DBT, Mahe K, et al. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly[J]. J Cell Sci, 2021, 134(14): jcs258897. [26] 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9):801-815. Jiang YS, Xu ZH.Brain developmental diseases and pathogenic mechanisms[J]. Yi Chuan, 2019, 41(9):801-815. [27] Wang X, Baumann C, De La, et al. Loss of acentriolar MTOCs disrupts spindle pole Aurora A and assembly of the liquid-like meiotic spindle domain in oocytes[J]. J Cell Sci, 2021, 134(14): jcs256297. [28] Wang X, Baumann C, De La Fuente R, et al. CEP215 and AURKA regulate spindle pole focusing and aMTOC organization in mouse oocytes[J]. Reproduction, 2020, 159(3): 261-274. [29] So C, Seres KB, Steyer AM, et al. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes[J]. Science, 2019, 364(6447): eaat9557. [30] Baumann C, Wang X, Yang L, et al.Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin[J]. J Cell Sci, 2017, 130(7): 1251-1262. [31] Salemi M, Barone C, Romano C, et al.Pericentrin expression in Down's syndrome[J]. Neurol Sci, 2013, 34(11): 2023-2025. [32] Trulioff A, Ermakov A, Malashichev Y.Primary cilia as a possible link between left-right asymmetry and neurodevelopmental diseases[J]. Genes (Basel), 2017, 8(2): 48-72. [33] Miyoshi K, Onishi K, Asanuma M, et al.Embryonic expression of pericentrin suggests universal roles in ciliogenesis[J]. Dev Genes Evol, 2006, 216(9): 537-542. [34] Jurczyk A, Gromley A, Redick S, et al.Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly[J]. J Cell Biol, 2004, 166(5): 637-643. [35] Liang S, Shi X, Yu C, et al.Identification of novel candidate genes in heterotaxy syndrome patients with congenital heart diseases by whole exome sequencing[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(12): 165906. [36] Miyoshi K, Kasahara K, Miyazaki I, et al.Pericentrin, a centrosomal protein related to microcephalic primordial dwarfism, is required for olfactory cilia assembly in mice[J]. FASEB J, 2009, 23(10): 3289-3297. [37] Lorenzo-Betancor O, Blackburn PR, Edwards E, et al.PCNT point mutations and familial intracranial aneurysms[J]. Neurology, 2018, 91(23): e2170-e2181. [38] Lam WY, Tang CS, So MT, et al.Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism[J]. EBioMedicine, 2021, 71: 103530. [39] Miyoshi K, Asanuma M, Miyazaki I, et al.DISC1 localizes to the centrosome by binding to kendrin[J]. Biochem Biophys Res Commun, 2004, 317(4):1195-1199. [40] Matsuzaki S, Tohyama M.Molecular mechanism of schizophrenia with reference to disrupted-in-schizophrenia 1 (DISC1)[J]. Neurochem Int, 2007, 51(2-4): 165-172. [41] Tohyama M, Miyata S, Hattori T, et al.Molecular basis of major psychiatric diseases such as schizophrenia and depression[J]. Anat Sci Int, 2015, 90(3): 137-143. [42] Endoh-Yamagami S, Karkar K, May S, et al.A mutation in the pericentrin gene causes abnormal interneuron migration to the olfactory bulb in mice[J]. Dev Biol, 2010, 340(1): 41-53. [43] Numata S, Iga J, Nakataki M, et al.Positive association of the pericentrin (PCNT) gene with major depressive disorder in the Japanese population[J]. J Psychiatry Neurosci, 2009, 34(3): 195-198. [44] Anitha A, Nakamura K, Yamada K, et al.Association studies and gene expression analyses of the DISC1-interacting molecules, pericentrin 2 (PCNT2) and DISC1-binding zinc finger protein (DBZ), with schizophrenia and with bipolar disorder[J]. Am J Med Genet B Neuropsychiatr Genet, 2009, 150B(7): 967-976. [45] Liu W, Guo Y, Liu X, et al.Family-based analysis combined with case-controls study implicate roles of PCNT in Tourette syndrome[J]. Neuropsychiatr Dis Treat, 2020, 16: 349-354. [46] Jurczyk A, Pino SC, O'Sullivan-Murphy B, et al. A novel role for the centrosomal protein, pericentrin, in regulation of insulin secretory vesicle docking in mouse pancreatic beta-cells[J]. PLoS One, 2010, 5(7): e11812. [47] Wang L, Gong Y, Li C, et al.Pericentrin expression in pancreatic β cells is associated impaired glucose tolerance[J]. Am J Transl Res, 2019, 11(4): 2257-2268. [48] Zu Y, Gong Y, Wan L, et al.Pericentrin is related to abnormal β-cell insulin secretion through f-actin regulation in mice[J]. PLoS One, 2015, 10(6): e0130458. [49] Zebrowski DC, Vergarajauregui S, Wu CC, et al.Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes[J]. Elife, 2015, 4: e05563. [50] Steinfeldt J, Becker R, Vergarajauregui S, et al.Alternative splicing of pericentrin contributes to cell cycle control in cardiomyocytes[J]. J Cardiovasc Dev Dis, 2021, 8(8): 87-103. |
[1] | 李晓高, 邓华, 何倩婷. 前臂梭形皮瓣在口腔颌面部中、小型缺损修复中的应用[J]. 中国口腔颌面外科杂志, 2024, 22(5): 473-477. |
[2] | 袁露函, 楚晨, 袁荣涛. 高活性骨替代材料在颌面部骨组织工程中的应用进展[J]. 中国口腔颌面外科杂志, 2024, 22(4): 394-399. |
[3] | 郁玺玺, 徐诸凤, 张媛媛, 吕明明, 王进兵, 王悦平. 3D打印偏颌测量仪的研制及在偏颌患者康复期的应用效果[J]. 中国口腔颌面外科杂志, 2024, 22(3): 255-260. |
[4] | 张芳, 寿卫东, 李妍. 医护协同下聚多卡醇泡沫硬化剂治疗头颈部静脉畸形疗效评价[J]. 中国口腔颌面外科杂志, 2024, 22(3): 274-278. |
[5] | 付亦蛟, 陶乐然, 于洪波. 数字化技术辅助颅颌面三维正中矢状面确立的研究进展[J]. 中国口腔颌面外科杂志, 2024, 22(3): 287-293. |
[6] | 郑彤, 姚侃, 钱轶峰, 孙红霞, 卢晓峰, 于雯雯. 成年打鼾人群患阻塞性睡眠呼吸暂停的危险因素分析[J]. 中国口腔颌面外科杂志, 2024, 22(2): 137-142. |
[7] | 张冰清, 史敬存, 吴梓谦, 张于涵, 王婕妤, 肖孟, 王磊. 同期神经化腓骨瓣用于下颌骨重建及下唇感觉恢复的术式初探[J]. 中国口腔颌面外科杂志, 2024, 22(2): 143-147. |
[8] | 郑阳山, 袁学顺, 姜晶, 邱书奇, 石照辉. 儿童口呼吸诊断及对牙颌面发育的影响[J]. 中国口腔颌面外科杂志, 2024, 22(1): 92-101. |
[9] | 葛良玉, 邵翠玲, 王守鹏, 陈霖, 李志萍, 顾倩平, 孟箭. 游离股前外侧皮瓣修复腮腺恶性肿瘤术后缺损12例效果评价[J]. 中国口腔颌面外科杂志, 2023, 21(6): 548-552. |
[10] | 高涛, 马莲, 罗奕, 孙勇刚. 鼻音计鼻音化率值与腭咽闭合状态关系的探讨[J]. 中国口腔颌面外科杂志, 2023, 21(4): 372-376. |
[11] | 蓝春慧, 张雪燕, 韦敏玲, 丁文炜, 梁建华. 整体性护理路径在先天性腭裂患儿手术护理中的应用[J]. 中国口腔颌面外科杂志, 2023, 21(3): 237-242. |
[12] | 胡潇丹, 徐豪越, 李晓, 卜令学, 贾暮云, 袁荣涛, 庞宝兴. 超声刀在辅助制备游离腓骨肌皮瓣中的临床应用[J]. 中国口腔颌面外科杂志, 2023, 21(2): 152-157. |
[13] | 葛卫文, 祁磊, 王昀, 张雷. 改良鼻旁植骨减少Le Fort I型截骨术后上颌骨垂直向复发的探讨[J]. 中国口腔颌面外科杂志, 2023, 21(2): 163-167. |
[14] | 陈伟良. 延长垂直下斜方肌岛状肌皮瓣修复重建大型头颈部缺损[J]. 中国口腔颌面外科杂志, 2023, 21(1): 1-10. |
[15] | 葛良玉, 季莉, 王浩然, 李志萍, 顾倩平, 孟箭. 适形前臂桡侧皮瓣修复面颊部软组织缺损的效果评价[J]. 中国口腔颌面外科杂志, 2023, 21(1): 24-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||