[1] Bouletreau P, Makaremi M, Ibrahim B, et al.Artificial intelligence: applications in orthognathic surgery[J]. J Stomatol Oral Maxillofac Surg, 2019, 120(4): 347-354. [2] Zheng Z, Yan H, Setzer FC, et al.Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection[J]. IEEE T Autom Sci Eng, 2021, 18(2): 603-614. [3] Wu L, Zhang J, Zhou W, et al.Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy[J]. Gut, 2019, 68(12): 2161-2169. [4] Bird D, Nix MG, Mccallum H, et al. Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning [J]. Radiother Oncol, 2021(1), 156: 23-28. [5] Hooshmand SA, Zarei Ghobadi M, Hooshmand SE, et al.A multimodal deep learning-based drug repurposing approach for treatment of COVID-19[J]. Mol Divers, 2021, 25(3): 1717-1730. [6] Hwang HW, Park JH, Moon JH, et al.Automated identification of cephalometric landmarks: part 2- Might it be better than human?[J]. Angle Orthod, 2020, 90(1): 69-76. [7] Chen X, Lian C, Deng HH, et al.Fast and accurate craniomaxillofacial landmark detection via 3D Faster R-CNN[J]. IEEE T Autom Sci Eng, 2021, 40(12): 3867-3878. [8] Yankun L, Li W, Pew-thian Y, et al. Automatic detection of craniomaxillofacial anatomical landmarks on CBCT images using 3D mask R-CNN [C]//Zhang DQ, Zhou LP, Jie B, et al. Graph learning in medical imaging[M]. Springer, Cham,2019:130-137. [9] Zhang J, Liu M, Wang L, et al.Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks[J]. Med Image Comput Comput Assist Interv, 2017,10434:720-728. [10] Lee S, Woo S, Yu J, et al.Automated CNN-based tooth segmentation in cone-beam CT for Dental implant planning[J]. IEEE Access, 2020, 8: 50507-50518. [11] Wang H, Minnema J, Batenburg KJ, et al.Multiclass CBCT image segmentation for orthodontics with deep learning[J]. J Dent Res, 2021, 100(9): 943-949. [12] Zhang X, Li Z, Lv P, et al.Registration algorithms of dental cast based on unorganized 3D point-cloud[J]. Comput Eng Appl, 2012, 48(19): 16-19. [13] Chung M, Lee J, Song W, et al.Automatic registration between dental cone-beam CT and scanned surface via deep pose regression neural networks and clustered similarities[J]. IEEE T Autom Sci Eng, 2020, 39(12): 3900-3909. [14] 朱玉佳, 许晴, 赵一姣,等. 深度学习算法辅助构建三维颜面正中矢状平面[J]. 北京大学学报(医学版), 2022, 54(1): 134-139. Zhu YJ, Xu Q, Zhao YJ, et al.Deep learning-assisted construction of three-demensional facial midsagittal plane[J]. Journal of Peking University:Health Sciences, 2022, 54(1): 134-139. [15] Dalvit Carvalho da Silva R, Jenkyn TR, Carranza VA. Convolutional neural networks and geometric moments to identify the bilateral symmetric midplane in facial skeletons from CT scans[J]. Biology, 2021, 10(3): 182-190. [16] Kim I, Misra D, Rodriguez L, et al.Malocclusion classification on 3D cone-beam CT craniofacial images using multi-channel deep learning models[J].Ann Int Conf IEEE Eng Med Biol Soc, 2020:1294-1298. [17] Murata S, Ishigaki K, Lee C, et al.Towards a smart dental healthcare: an automated assessment of orthodontic treatment need[J]. Health Info, 2017:35-39. [18] Ma Q, Kobayashi E, Fan B, et al.Machine-learning-based approach for predicting postoperative skeletal changes for orthognathic surgical planning[J]. Int J Med Robot, 2022,18(3):e2379. [19] Knoops PGM, Papaioannou A, Borghi A, et al.A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery[J]. Sci Rep, 2019, 9: 14597. [20] Xiao D, Lian C, Deng H, et al.Estimating reference bony shape models for orthognathic surgical planning using 3D point-cloud deep learning[J]. IEEE J Biomed Health Inform, 2021, 25(8): 2958-2966. [21] Li P, Kong D, Tang T, et al.Orthodontic treatment planning based on artificial neural networks[J]. Sci Rep, 2019, 9(1): 2037. [22] Kim YH, Park JB, Chang MS, et al.Influence of the depth of the convolutional neural networks on an artificial intelligence model for diagnosis of orthognathic surgery[J]. J Pers Med, 2021, 11(5): 356-362. [23] Ma L, Kim D, Lian C, et al.Deep simulation of facial appearance changes following craniomaxillofacial bony movements in orthognathic surgical planning[J]. Med Image Comput Comput Assist Interv, 2021, 12904: 459-468. [24] Ter Horst R, Van weert H, Loonen T, et al. Three-dimensional virtual planning in mandibular advancement surgery: soft tissue prediction based on deep learning[J]. J Craniomaxillofac Surg, 2021, 49(9): 775-782. |