[1] Zheng CM, Ge MH, Zhang SS, et al.Oral cavity cancer incidence and mortality in China, 2010[J]. J Cancer Res Ther, 2015, 11(Suppl 2): C149-C154. [2] Bray F, Ferlay J, Soerjomataram I, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [3] Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [4] Zhang LW, Li J, Cong X, et al.Incidence and mortality trends in oral and oropharyngeal cancers in China, 2005-2013[J]. Cancer Epidemiol, 2018, 57: 120-126. [5] Seoane J, Alvarez-Novoa P, Gomez I, et al.Early oral cancer diagnosis: the Aarhus statement perspective. a systematic review and meta-analysis[J]. Head Neck, 2016, 38(Suppl 1): E2182-E2189. [6] Stathopoulos P, Smith WP.Analysis of survival rates following primary surgery of 178 consecutive patients with oral cancer in a large district general hospital[J]. J Maxillofac Oral Surg, 2017, 16(2): 158-163. [7] Grafton-Clarke C, Chen KW, Wilcock J.Diagnosis and referral delays in primary care for oral squamous cell cancer: a systematic review[J]. Br J Gen Pract, 2019, 69(679): e112-e126. [8] Majumder SK, Gupta A, Gupta S, et al.Multi-class classification algorithm for optical diagnosis of oral cancer[J]. J Photochem Photobiol B, 2006, 85(2): 109-117. [9] Chan CH, Huang TT, Chen CY, et al.Texture-map-based branch-collaborative network for oral cancer detection[J]. IEEE Trans Biomed Circuits Syst, 2019, 13(4): 766-780. [10] Jan Z, El Assadi F, Abd-Alrazaq A, et al.Artificial intelligence for the prediction and early diagnosis of pancreatic cancer: scoping review[J]. J Med Internet Res, 2023, 25: e44248. [11] Faradmal J, Soltanian AR, Roshanaei G, et al.Comparison of the performance of log-logistic regression and artificial neural networks for predicting breast cancer relapse[J]. Asian Pac J Cancer Prev, 2014, 15(14): 5883-5888. [12] Chien CW, Lee YC, Ma T, et al.The application of artificial neural networks and decision tree model in predicting post-operative complication for gastric cancer patients[J]. Hepatogastroenterology, 2008, 55(84): 1140-1145. [13] Esteva A, Kuprel B, Novoa RA, et al.Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. [14] Fu Q, Chen Y, Li Z, et al.A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study[J]. EClinicalMedicine, 2020, 27: 100558. [15] Uthoff RD, Song B, Sunny S, et al.Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities[J]. PLoS One, 2018, 13(12): e0207493. [16] Jeyaraj PR, Samuel Nadar ER.Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm[J]. J Cancer Res Clin Oncol, 2019, 145(4): 829-837. [17] Zhang X, Gleber-Netto FO, Wang S, et al.Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia[J]. Cancer Med, 2023, 12(6): 7508-7518. [18] Jubair F, Al-Karadsheh O, Malamos D, et al.A novel lightweight deep convolutional neural network for early detection of oral cancer[J]. Oral Dis, 2022, 28(4): 1123-1130. [19] Litjens G, Kooi T, Bejnordi BE, et al.A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. [20] Das M, Dash R, Mishra SK.Automatic detection of oral squamous cell carcinoma from histopathological images of oral mucosa using deep convolutional neural network[J]. Int J Environ Res Public Health, 2023, 20(3): 2131. [21] Shams WK, Htike ZZ.Oral cancer prediction using gene expression profiling and machine learning[J]. Int J Appl Engineer Res, 2017, 12(15): 4893-4898. [22] Alhazmi A, Alhazmi Y, Makrami A, et al.Application of artificial intelligence and machine learning for prediction of oral cancer risk[J]. J Oral Pathol Med, 2021, 50(5): 444-450. [23] Tseng WT, Chiang WF, Liu SY, et al.The application of data mining techniques to oral cancer prognosis[J]. J Med Syst, 2015, 39(5): 59. [24] Thomas B, Kumar V, Saini S.Texture analysis based segmentation and classification of oral cancer lesions in color images using ANN[C]// Signal Processing, Computing and Con-trol(ISPCC), 2013 IEEE International Conference on. IEEE, 2013. [25] Muthu Rama Krishnan M, Pal M, Bomminayuni SK, et al. Automated classification of cells in sub-epithelial connective tissue of oral sub-mucous fibrosis-an SVM based approach[J]. Comput Biol Med, 2009, 39(12): 1096-1104. [26] Banerjee S, Pal M, Chakrabarty J, et al.Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer[J]. Anal Bioanal Chem, 2015, 407(26): 7935-7943. [27] Brouwer de Koning SG, Baltussen EJM, Karakullukcu MB, et al. Toward complete oral cavity cancer resection using a handheld diffuse reflectance spectroscopy probe[J]. J Biomed Opt, 2018, 23(12): 1-8. [28] Rahman TY, Mahanta LB, Choudhury H, et al.Study of morphological and textural features for classification of oral squamous cell carcinoma by traditional machine learning techniques[J]. Cancer Rep(Hoboken), 2020, 3(6): e1293. [29] Adeoye J, Choi SW, Thomson P.Bayesian disease mapping and the 'High-Risk' oral cancer population in Hong Kong[J]. J Oral Pathol Med, 2020, 49(9): 907-913. [30] Anderson C, Lee D, Dean N.Identifying clusters in Bayesian disease mapping[J]. Biostatistics, 2014, 15(3): 457-469. [31] López-Cortés XA, Matamala F, Venegas B, et al.Machine-learning applications in oral cancer: a systematic review[J]. Appl Sci, 2022, 12(11): 5715. [32] 曹堇沫. 人工智能在肿瘤护理领域应用的研究进展[J]. 护理研究, 2022, 36(9): 1589-1593. Cao JM.Research progress on the application of artificial intelligence in tumor nursing[J]. Chinese Nursing Research, 2022, 36(9): 1589-1593. [33] 许树强, 张铁山. 信息化赋能公立医院高质量发展[J]. 中国医院, 2023, 27(7): 1-3. Xu SQ, Zhang TS.Empowering high-quality development of public hospitals through informationization[J]. Chinese Hospitals, 2023, 27(7): 1-3. [34] Thampi V, Hariprasad R, John A, et al.Feasibility of training community health workers in the detection of oral cancer[J]. JAMA Netw Open, 2022, 5(1): e2144022. [35] Chuang SL, Su WW, Chen SL, et al.Population-based screening program for reducing oral cancer mortality in 2 334 299 Taiwanese cigarette smokers and/or betel quid chewers[J]. Cancer, 2017, 123(9): 1597-1609. [36] Alabi RO, Vartiainen T, Elmusrati M.Machine learning for prognosis of oral cancer: what are the ethical challenges?[C]. CEUR Workshop Proceedings, 2020. |