[1] Chi AC, Day TA, Neville BW.Oral cavity and oropharyngeal squamous cell carcinoma-an update[J]. CA Cancer J Clin, 2015, 65(5): 401-421. [2] Vermorken JB, Trigo J, Hitt R, et al.Open-label, uncontrolled, multicenter phase Ⅱ study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy[J]. J Clin Oncol, 2007, 25(16): 2171-2177. [3] Ferris RL, Blumenschein G Jr, Fayette J, et al.Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016, 375(19): 1856-1867. [4] Seiwert TY, Burtness B, Mehra R, et al.Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial[J]. Lancet Oncol, 2016, 17(7): 956-965. [5] Mehanna H, Robinson M, Hartley A, et al.Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial[J]. Lancet, 2019, 393(10166): 51-60. [6] Burtness B, Harrington KJ, Greil R, et al.Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 394(10212): 1915-1928. [7] Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576-582. [8] Nijman SMB, Friend SH.Cancer. Potential of the synthetic lethality principle[J]. Science, 2013, 342(6160): 809-811. [9] Dobzhansky T.Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura[J]. Genetics, 1946, 31(3): 269-290. [10] Hartwell LH, Szankasi P, Roberts CJ, et al.Integrating genetic approaches into the discovery of anticancer drugs[J]. Science, 1997, 278(5340): 1064-1068. [11] Bryant HE, Schultz N, Thomas HD, et al.Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase[J]. Nature, 2005, 434(7035): 913-917. [12] Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035): 917-921. [13] Lord CJ, Ashworth A.PARP inhibitors: synthetic lethality in the clinic[J]. Science, 2017, 355(6330): 1152-1158. [14] Zimmermann M, Murina O, Reijns MAM, et al.CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions[J]. Nature, 2018, 559(7713): 285-289. [15] Kim H, Xu H, George E, et al.Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models[J]. Nat Commun, 2020, 11(1): 3726-3742. [16] Ning JF, Stanciu M, Humphrey MR, et al.Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma[J]. Nat Commun, 2019, 10(1): 2910-2927. [17] Agrawal N, Frederick MJ, Pickering CR, et al.Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1[J]. Science, 2011, 333(6046): 1154-1157. [18] Morris LGT, Chandramohan R, West L, et al.The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform[J]. JAMA Oncol, 2017, 3(2): 244-255. [19] Deneka AY, Einarson MB, Bennett J, et al.Synthetic lethal targeting of mitotic checkpoints in HPV-negative head and neck cancer[J]. Cancers, 2020, 12(2): 306-323. [20] Huang M, Feng X, Su D, et al.Genome-wide CRISPR screen uncovers a synergistic effect of combining Haspin and Aurora kinase B inhibition[J]. Oncogene, 2020, 39(21): 4312-4322. [21] Sambandam V, Frederick MJ, Shen L, et al.PDK1 mediates -mutated head and neck squamous carcinoma vulnerability to therapeutic PI3K/mTOR inhibition[J]. Clin Cancer Res, 2019, 25(11): 3329-3340. [22] Wang T, Yu H, Hughes NW, et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic ras [J]. Cell, 2017, 168(5): 890-903.e15. [23] Chan EM, Shibue T, McFarland JM, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers[J]. Nature, 2019, 568(7753): 551-556. [24] Gong X, Du J, Parsons SH, et al.Aurora A kinase inhibition is synthetic lethal with loss of the tumor suppressor gene[J]. Cancer Discov, 2019, 9(2): 248-263. [25] Lissanu Deribe Y, Sun Y, Terranova C, et al.Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer[J]. Nat Med, 2018, 24(7): 1047-1057. [26] Biankin AV, Waddell N, Kassahn KS, et al.Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes[J]. Nature, 2012, 491(7424): 399-405. [27] Szlachta K, Kuscu C, Tufan T, et al.CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response[J]. Nat Commun, 2018, 9(1):4275-4288. [28] Zaretsky JM, Garcia-Diaz A, Shin DS, et al.Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016, 375(9): 819-829. [29] Koyama S, Akbay EA, Li YY, et al.STK11/LKB1 Deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment[J]. Cancer Res, 2016, 76(5): 999-1008. [30] Sade-Feldman M, Jiao YJ, Chen JH, et al.Resistance to checkpoint blockade therapy through inactivation of antigen presentation[J]. Nat Commun, 2017, 8(1): 1136-1147. [31] Manguso RT, Pope HW, Zimmer MD, et al.In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target[J]. Nature, 2017, 547(7664): 413-418. [32] Shoemaker RH.The NCI60 human tumour cell line anticancer drug screen[J]. Nat Rev Cancer, 2006, 6(10): 813-823. [33] Bertotti A, Migliardi G, Galimi F, et al.A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer[J]. Cancer Discov, 2011, 1(6): 508-523. [34] Xue Z, Vis DJ, Bruna A, et al.MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models[J]. Cell Res, 2018, 28(7): 719-729. [35] Wang J, Hu K, Guo J, et al.Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK[J]. Nat Commun, 2016, 7: 11363. [36] Lee J, Kim H, Lee JE, et al. Selective cytotoxicity of the NAMPT inhibitor FK866 toward gastric cancer cells with markers of the epithelial-mesenchymal transition, due to loss of NAPRT [J]. Gastroenterology, 2018, 155(3): 799-814.e13. [37] McDonald ER, de Weck A, Schlabach MR, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening [J]. Cell, 2017, 170(3): 577-592.e10. [38] Behan FM, Iorio F, Picco G, et al.Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens[J]. Nature, 2019, 568(7753): 511-516. [39] Aguirre AJ, Meyers RM, Weir BA, et al.Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting[J]. Cancer Discov, 2016, 6(8):914-929. [40] Griffith M, Griffith OL, Coffman AC, et al.DGIdb: mining the druggable genome[J]. Nat Methods, 2013, 10(12): 1209-1210. |