[1] Solomon B, Young RJ, Rischin D.Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments[J]. Semin Cancer Biol, 2018, 52(2): 228-240. [2] Smith CD, Carmeli S, Moore RE, et al.Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance[J]. Cancer Res, 1993, 53(6): 1343-1347. [3] Sakamoto M, Kondo A, Kawasaki K, et al.Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray[J]. Human Cell, 2001, 14(4): 305-315. [4] Kasahara K, Fujiwara Y, Nishio K, et al.Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin[J]. Cancer Res, 1991,51(12):3237-3242. [5] Chaney SG, Sancar A.DNA repair: enzymatic mechanisms and relevance to drug response[J]. J Natl Cancer Inst, 1996, 88(19):1346-1360. [6] Vousden KH, Lane DP.P53 in health and disease[J]. Nat Rev Mol Cell Biol, 2007, 8(4): 275-283. [7] Hengstler JG, Pilch H, Schmidt M, et al.Metallothionein expression in ovarian cancer in relation to histopathological parameters and molecular markers of prognosis[J]. Int J Cancer, 2001, 95(2): 121-127. [8] Tong T, Qin X, Jiang Y, et al.A novel CREB5/TOP1MT axis confers cisplatin resistance through inhibiting mitochondrial apoptosis in head and neck squamous cell carcinoma[J]. BMC Med, 2022, 20(1):1-21. [9] Lee NCJ, Kelly JR, Park HS, et al.Patterns of failure in high-metastatic node number human papillomavirus-positive oropharyngeal carcinoma[J]. Oral Oncol, 2018, 85: 35-39. [10] Theile D, Ketabi-Kiyanvash N, Herold-Mende C, et al.Evaluation of drug transporters’ significance for multidrug resistance in head and neck squamous cell carcinoma[J]. Head and Neck, 2011, 33(7): 959-968. [11] Galluzzi L, Senovilla L, Vitale I, et al.Molecular mechanisms of cisplatin resistance[J]. Oncogene, 2012, 31(15): 1869-1883. [12] Pommier Y, Nussenzweig A, Takeda S, et al.Human topoisomerases and their roles in genome stability and organization[J]. Nat Rev Mol Cell Biol, 2022, 23(6): 407-427. [13] Baechler SA, Factor VM, Rosa ID, et al.The mitochondrial type IB topoisomerase drives mitochondrial translation and carcinogenesis[J]. Nat Commun, 2019, 10(1): 1-13. [14] Stewart L, Stewart L, Redinbo MR, et al.A model for the mechanism of human topoisomerase I[J]. Science, 1998, 279(5356): 1534-1541. [15] Fei L, Lu Z, Xu Y, et al.A comprehensive pan-cancer analysis of the expression characteristics, prognostic value, and immune characteristics of TOP1MT[J]. Front Genet, 2022, 13: 920897. [16] Zoppoli G, Douarre C, Rosa ID, et al.Coordinated regulation of mitochondrial topoisomerase IB with mitochondrial nuclear encoded genes and MYC[J]. Nucleic Acids Res, 2011, 39(15): 6620-6632. [17] Khiati S, Rosa ID, Sourbier C, et al.Mitochondrial topoisomerase I ( Top1mt ) is a novel limiting factor of doxorubicin cardiotoxicity[J]. Clin Cancer Res, 2014, 20(18): 4873-4881. [18] Lu Q, Wang M, Gui Y, et al.Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis[J]. Cell Death Dis, 2020, 11(5): 364-378. [19] Yu X, Meng X, Xu M, et al.Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-κB and improving mitochondrial function[J]. EBioMedicine, 2018, 36: 266-280. [20] Gong W, Lu L, Zhou Y, et al.The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction[J]. Am J Physiol Renal Physiol, 2021, 320(4): F608-F616. [21] Bajwa A, Rosin DL, Chroscicki P, et al.Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury[J]. J Am Soc Nephrol, 2015, 26(4): 908-925. [22] Kohno K, Wang KY, Takahashi M, et al.Mitochondrial transcription factor a and mitochondrial genome as molecular targets for cisplatin-based cancer chemotherapy[J]. Int J Mol Sci, 2015, 16(8): 19836-19850. |