[1] Huang Z, Zhuo Y, Shen Z, et al. The role of NEFL in cell growth and invasion in head and neck squamous cell carcinoma cell lines [J]. J Oral Pathol Med, 2014, 43(3): 191-198. [2] Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5): 871-890. [3] Gammon L, Mackenzie IC. Roles of hypoxia, stem cells and epithelial-mesenchymal transition in the spread and treatment resistance of head and neck cancer [J]. J Oral Pathol Med, 2016, 45(2): 77-82. [4] Vasconcelos MG, Vasconcelos RG, Pereira de Oliveira D, et al. Distribution of hypoxia-inducible factor-1 α and glucose transporter-1 in human tongue cancers [J]. J Oral Maxillofac Surg, 2015, 73(9): 1753-1760. [5] Badowska-Kozakiewicz AM, Budzik MP, Przybylski J. Hypoxia in breast cancer [J]. Pol J Pathol, 2015, 66(4): 337-346. [6] Han MW, Lee JC, Kim YM, et al. Epithelial-mesenchymal transition: clinical implications for nodal metastasis and prognosis of tongue cancer [J]. Otolaryngol Head Neck Surg, 2015, 152(1): 80-86. [7] Wang Y, Lin Z, Sun L, et al. Akt/Ezrin Tyr353/NF-kappaB pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma [J]. Br J Cancer, 2014, 110(3): 695-705. [8] Sun L, Yao Y, Liu B, et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1 [J]. Oncogene, 2012, 31(4): 432-445. [9] Chen C, Zimmermann M, Tinhofer I, et al. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma [J]. Cancer Lett, 2013, 338(1): 47-56. [10] Ock CY, Kim S, Keam B, et al. PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma [J]. Oncotarget, 2016, 7(13): 15901-15914. [11] Zuo J, Wen J, Lei M, et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT [J]. Med Oncol, 2016, 33(2): 15. [12] Kang FW, Gao Y, Que L, et al. Hypoxia-inducible factor-1α overexpression indicates poor clinical outcomes in tongue squamous cell carcinoma [J]. Exp Ther Med, 2013, 5(1): 112-118. [13] Liang X, Zheng M, Jiang J, et al. Hypoxia-inducible factor-1 alpha, in association with TWIST2 and SNIP1, is a critical prognostic factor in patients with tongue squamous cell carcinoma [J]. Oral Oncol, 2011, 47(2): 92-97. [14] Roh JL, Cho KJ, Kwon GY, et al. The prognostic value of hypoxia markers in T2-staged oral tongue cancer [J]. Oral Oncol, 2009, 45(1): 63-68. [15] Zhou X, Huang D, Xue Z, et al. Effect of HIF-1alpha on biological activation of human tongue squamous cell carcinoma SCC-15 cells in vitro [J]. Int J Oncol, 2015, 46(6): 2346-2354. [16] Liang J, Zhang Z, Liang L, et al. HIF-1alpha regulated tongue squamous cell carcinoma cell growth via regulating VEGF expression in a xenograft model [J]. Ann Transl Med, 2014, 2(9): 92. [17] Ge X, Liu X, Lin F, et al. MicroRNA-421 regulated by HIF-1alpha promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer [J]. Oncotarget, 2016, 7(17): 24466-24482. [18] Li L, Li C, Wang S, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype [J]. Cancer Res, 2016, 76(7): 1770-1780. |