[1] Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults [J]. JAMA, 2013, 310(9): 948-959.
[2] Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future [J]. Lancet, 2011, 377(9773): 1276-1287.
[3] Strotmeyer ES, Cauley JA, Schwartz AV, et al. Nontraumatic fracturerisk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study[J]. Arch Intern Med, 2005, 165(14): 1612-1617.
[4] Janghorbani M, Van Dam RM, Willett WC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture [J]. Am J Epidemiol, 2007, 166(5): 495-505.
[5] Segev Y, Landau D, Davidoff-Friedman S, et al. Involvement of the skeletal GH-IGF system in an experimental model of diabetes-induced growth retardation [J]. Acta Diabetol, 2002, 39(2): 61-67.
[6] Saito M. Diabetes mellitus and osteoporosis. Bone quality in diabetes [J]. Clin Calcium, 2012, 22(9): 1323-1332.
[7] Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy [J]. J Cell Biochem, 1994, 56(3): 283-294.
[8] Shi C. Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells [J]. Immunology, 2012, 136(2): 133-138.
[9] Kim KI, Park S, Im GI. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells [J]. Biomaterials, 2014, 35(17): 4792-4804.
[10] Xu C, Wang J, Zhu T, et al. Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation[J]. Curr Stem Cell Res Ther, 2006, 11(3): 247-254.
[11] Zhang B, Liu N, Shi H, et al. High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3beta[J]. J Bone Miner Metab, 2016, 34(2):140-150.
[12] Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy [J]. PLoS One, 2015, 10(5): e126537.
[13] Etuk EU. Animals models for studying diabetes mellitus [J]. Agri Biol J North Am, 2010, 1(2): 130-134.
[14] Rees DA, Alcolado JC. Animal models of diabetes mellitus [J]. Diabetic Med, 2005, 22(4): 359-370.
[15] Stübinger S, Dard M. The rabbit as experimental model for research in implant dentistry and related tissue regeneration [J]. J Invest Surg, 2013, 26(5): 266-282.
[16] Fox RR. The rabbit as a research subject[J]. Physiologist, 1984,27(6):393-402.
[17] Takagi M, Kasayama S, Yamamoto T, et al. Advanced glycation endproducts stimulate interleukin-6 production by human bone-derived cells [J]. J Bone Miner Res, 1997, 12(3): 439-446.
[18] Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans [J]. Diabetes Care, 2013, 36(4): 943-949.
[19] Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview [J]. Indian J Clin Biochem, 2014, 29(3): 269-278.
[20] Roschger A, Roschger P, Keplingter P, et al. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfect [J]. Bone, 2014, 66: 182-188.
[21] Komori T. Regulation of osteoblast differentiation by Runx2 [J]. Adv Exp Med Biol, 2010, 658: 43-49.
[22] Hemprich A, Hidding J, Lehmann R. Bone regeneration after filling of extensive cysts by means of bone collagen type 1 [J]. Stomatol DDR, 1989, 39(6): 391-395.
[23] Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model [J]. Calcif Tisssue Int, 1998, 63(4): 357-360.
[24] Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on the repair of segmental femoral defects in rats [J]. J Bone Joint Surg Am, 1999, 81(7): 905-917.
[25] Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice [J]. Nature, 1996, 382(6590): 448-452.
[26] Nakase T, Sugimoto M, Sato M, et al. Switch of osteonectin and osteopontin mRNA expression in the process of cartilage-to-bone transition during fracture repair [J]. Acta Histochem, 1998, 100(3): 287-295.
[27] Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascuslar endothelial growth factor stimulates chemotactic migration of primary human osteoblasts [J]. Bone, 2002, 30(3): 472-477.
[28] Schmid J, Wallkamm B, Hämmerle CH, et al. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment [J]. Clin Oral Implants Res, 1997, 8(3): 244-248.
[29] Glowacki J. Angiogenesis in fracture repair [J]. Clin Orthop Relat Res, 1998, 355 (Suppl): S82-89.
[30] Clark D, Wang X, Chang S, et al. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces [J]. J Biomed Mater Res A, 2015, 103(2): 639-645.
[31] Lin Z, Wang JS, Lin L, et al. Effects of BMP2 and VEGF165 on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells [J]. Exp Ther Med, 2014, 7(3): 625-629.
[32] Bikfalvi A, Sauzeau C, Moukadiri H, et al. Interaction of vasculotropin/vascular endothelial cell growth factor with human umbilical vein endothelial cells: binding, internalization, degradation, and biological effects [J]. J Cell Physiol, 1991, 149(1): 50-59.
[33] Ferrara N, Bunting S. Vascular endothelial growth factor, a specific regulator of angiogenesis[J]. Curr Opin Nephrol Hypertens, 1996, 5(1): 35-44.
[34] Johnson GL, Vaillancourt RR. Sequential protein kinase reactions controlling cell growth and differentiation [J]. Curr Opin Cell Biol, 1994, 6(2): 230-238.
[35] Wennström S, Downward J. Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor [J]. Mol Cell Biol, 1999, 19(6): 4279-4288. |