[1] Patel V, Galloway TJ, Liu JC.The impact of positive margin on survival in oral cavity squamous cell carcinoma[J]. Oral Oncol, 2021, 122: 105499. [2] Sung H, Ferlay J, Siegel RL, et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [3] Ng JH, Iyer NG, Tan MH, et al.Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study[J]. Head Neck, 2017, 39(2): 297-304. [4] Tan Y, Wang Z, Xu M, et al.Oral squamous cell carcinomas: state of the field and emerging directions[J]. Int J Oral Sci, 2023, 15(1): 44. [5] Chamoli A, Gosavi AS, Shirwadkar UP, et al.Overview of oral cavity squamous cell carcinoma: risk factors, mechanisms, and diagnostics[J]. Oral Oncol, 2021, 121: 105451. [6] Jemal A, Bray F, Center MM, et al.Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. [7] Taban Q, Mumtaz PT, Masoodi KZ, et al.Scavenger receptors in host defense: from functional aspects to mode of action[J]. Cell Commun Signal, 2022, 20(1): 2-18. [8] Kazakova E, Iamshchikov P, Larionova I, et al.Macrophage scavenger receptors: tumor support and tumor inhibition[J]. Front Oncol, 2023, 12: 1096897. [9] Brown MS, Goldstein JL.Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis[J]. Annu Rev Biochem, 1983, 52: 223-261. [10] Patten DA, Wilkinson AL, O'Keeffe A, et al. Scavenger receptors: novel roles in the pathogenesis of liver inflammation and cancer[J]. Semin Liver Dis, 2022, 42(1): 61-76. [11] Plüddemann A, Mukhopadhyay S, Gordon S.Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry[J]. Immunol Rev, 2011, 240(1): 11-24. [12] PrabhuDas MR, Baldwin CL, Bollyky PL, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease[J]. J Immunol, 2017, 198(10): 3775-3789. [13] Zani IA, Stephen SL, Mughal NA, et al.Scavenger receptor structure and function in health and disease[J]. Cells, 2015, 4(2): 178-201. [14] Tillison EA, Sahoo D.Sticky business: correlating oligomeric features of Class B scavenger receptors to lipid transport[J]. Curr Atheroscler Rep, 2024, 27(1): 15. [15] Velasco-de Andrés M, Casadó-Llombart S, Català C, et al. Soluble CD5 and CD6: lymphocytic Class I scavenger receptors as immunotherapeutic agents[J]. Cells, 2020, 9(12): 2589. [16] Vasquez M, Simões I, Consuegra-Fernández M, et al.Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1[J]. Eur J Immunol, 2017, 47(7): 1108-1118. [17] Gudgeon J, Marín-Rubio JL, Trost M.The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer[J]. Front Immunol, 2022, 13: 1012002. [18] Haidari S, Tröltzsch M, Knösel T, et al.Fatty acid receptor CD36 functions as a surrogate parameter for lymph node metastasis in oral squamous cell carcinoma[J]. Cancers (Basel), 2021, 13(16): 4125. [19] Sakurai K, Tomihara K, Yamazaki M, et al.CD36 expression on oral squamous cell carcinoma cells correlates with enhanced proliferation and migratory activity[J]. Oral Dis, 2020, 26(4): 745-755. [20] Wang Y, Zhang X, Wang S, et al.Identification of metabolism-associated biomarkers for early and precise diagnosis of oral squamous cell carcinoma[J]. Biomolecules, 2022, 12(3): 400. [21] Zhang J, Li S, Liu F, et al.Role of CD68 in tumor immunity and prognosis prediction in pan-cancer[J]. Sci Rep, 2022, 12(1): 7844. [22] Yamagata Y, Tomioka H, Sakamoto K, et al.CD163-positive macrophages within the tumor stroma are associated with lymphangiogenesis and lymph node metastasis in oral squamous cell carcinoma[J]. J Oral Maxillofac Surg, 2017, 75(10): 2144-2153. [23] Ni YH, Ding L, Huang XF, et al.Microlocalization of CD68+ tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients[J]. Tumour Biol, 2015, 36(7): 5291-5298. [24] Kazakova E, Iamshchikov P, Larionova I, et al.Macrophage scavenger receptors: tumor support and tumor inhibition[J]. Front Oncol, 2023, 12: 1096897. [25] Haque ASMR, Moriyama M, Kubota K, et al.CD206+ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production[J]. Sci Rep, 2019, 9(1): 14611. [26] Rabinowits G, Haddad RI.Overcoming resistance to EGFR inhibitor in head and neck cancer: a review of the literature[J]. Oral Oncol, 2012, 48(11): 1085-1089. [27] Schledzewski K, Géraud C, Arnold B, et al.Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors[J]. J Clin Invest, 2011, 121(2): 703-714. [28] Irjala H, Alanen K, Grénman R, et al.Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor(CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium[J]. Cancer Res, 2003, 63(15): 4671-4676. [29] Buechler C, Ritter M, Orsó E, et al.Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli[J]. J Leukoc Biol, 2000, 67(1): 97-103. [30] Han MW, Lee JC, Park SY, et al.Homotypic interaction of Stabilin-2 plays a critical role in lymph node metastasis of tongue cancer[J]. Anticancer Res, 2016, 36(12): 6611-6618. [31] Chohan MH, Perry M, Laurance-Young P, et al.Prognostic role of CD68+ and CD163+ tumour-associated macrophages and PD-L1 expression in oral squamous cell carcinoma: a meta-analysis[J]. Br J Biomed Sci, 2023, 80: 11065. [32] Kubota K, Moriyama M, Furukawa S, et al.CD163+ CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma[J]. Sci Rep, 2017, 7(1): 1755. [33] Su S, Chien M, Lin C, et al.RAGE gene polymorphism and environmental factor in the risk of oral cancer[J]. J Dent Res, 2015, 94(3): 403-411. [34] Joosten SPJ, Spaargaren M, Clevers H, et al.Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188437. [35] Wang SJ, Bourguignon LY.Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance[J]. Am J Pathol, 2011, 178(3): 956-963. [36] Herz J, Strickland DK.LRP: a multifunctional scavenger and signaling receptor[J]. J Clin Invest, 2001, 108(6): 779-784. [37] Chea C, Miyauchi M, Inubushi T, et al.Molecular mechanisms of inhibitory effects of bovine lactoferrin on invasion of oral squamous cell carcinoma[J]. Pharmaceutics, 2023, 15(2): 562. [38] Kubota K, Moriyama M, Furukawa S, et al.CD163+ CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma[J]. Sci Rep, 2017, 7(1): 1755. [39] Wang CW, Biswas PK, Islam A, et al.The use of immune regulation in treating head and neck squamous cell carcinoma (HNSCC)[J]. Cells, 2024, 13(5): 413. [40] Lee Y, Shin JH, Longmire M, et al.CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1[J]. Clin Cancer Res, 2016, 22(14): 3571-3581. [41] Bhaskaran N, Jayaraman S, Quigley C, et al.The role of Dectin-1 signaling in altering tumor immune microenvironment in the context of aging[J]. Front Oncol, 2021, 11: 669066. [42] He Y, Dong Y, Zhang X, et al.Lipid droplet-related PLIN2 in CD68+ tumor-associated macrophage of oral squamous cell carcinoma: implications for cancer prognosis and immunotherapy[J]. Front Oncol, 2022, 12: 824235. [43] Su W, Wang Y, Wang F, et al.Hsa_circ_0005379 regulates malignant behavior of oral squamous cell carcinoma through the EGFR pathway[J]. BMC Cancer, 2019, 19(1): 400. [44] Liang J, Liu J, Deng Z, et al.DLX6 promotes cell proliferation and survival in oral squamous cell carcinoma[J]. Oral Dis, 2022, 28(1): 87-96. [45] Jin H, Zhang L, Wang S, et al.BST2 promotes growth and induces gefitinib resistance in oral squamous cell carcinoma via regulating the EGFR pathway[J]. Arch Med Sci, 2019, 17(6): 1772-1782. [46] Xie H, Ma Y, Li J, et al.WNT7A promotes EGF-induced migration of oral squamous cell carcinoma cells by activating β-catenin/MMP9-mediated signaling[J]. Front Pharmacol, 2020, 11: 98. [47] Sasahira T, Kirita T, Bhawal UK, et al.Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma[J]. Histopathology, 2007, 51(2): 166-172. [48] Ko SY, Ko HA, Shieh TM, et al.Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro[J]. PLoS One, 2014, 9(10): e110542. [49] Plemmenos G, Tzimogianni V, Fili C, et al.Contributing role of high mobility group box 1 signaling in oral cancer development and therapy[J]. Life (Basel), 2023, 13(7): 1577. [50] Riley RS, June CH, Langer R, et al.Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov, 2019, 18(3): 175-196. [51] 靳能皓, 田瑜, 朱亮, 等. PD-L1及肿瘤免疫微环境对预测口腔鳞癌新辅助治疗效果的意义[J]. 中国口腔颌面外科杂志, 2023, 21(6): 572-578. Jin NH, Tian Y, Zhu L, et al.Clinical significance of PD-L1 and tumor immune microenvironment in predicting neoadjuvant therapy for oral squamous cell carcinoma[J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(6): 572-578. [52] 孙立伟, 李林, 李金铎, 等. 头颈部鳞状细胞癌的免疫治疗进展[J]. 中国城乡企业卫生, 2023, 38(7): 47-50. Sun LW, Li L, Li JD, et al.Progress in immunotherapy of head and neck squamous cell carcinoma[J]. Chinese Journal of Urban and Rural Enterprise Hygiene, 2023, 38(7): 47-50. [53] Cheng Y, Song Z, Chen J, et al.Molecular basis, potential biomarkers, and future prospects of OSCC and PD-1/PD-L1 related immunotherapy methods[J]. Heliyon, 2024, 10(4): e25895. [54] Clarke E, Eriksen JG, Barrett S.The effects of PD-1/PD-L1 checkpoint inhibitors on recurrent/metastatic head and neck squamous cell carcinoma: a critical review of the literature and meta-analysis[J]. Acta Oncol, 2021, 60(11): 1534-1542. [55] 汪子恒, 周韧, 严佳, 等. 靶向EGFR治疗联合化疗与单纯化疗对口腔癌痛的影响[J]. 中国口腔颌面外科杂志, 2023, 21(3): 225-230. Wang ZH, Zhou R, Yan J, et al.Effect of EGFR-targeted therapy in combination with chemotherapy versus chemotherapy alone on oral cancer pain[J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(3): 225-230. [56] 许婷婷, 胡超苏, 李宝生. 抗EGFR单抗治疗局部晚期头颈部鳞状细胞癌临床共识(2023年版)[J]. 中国癌症, 2023, 33(1): 81-94. Xu TT, Hu CS, Li BS.Clinical consensus on the treatment of locally advanced squamous cell carcinoma of the head and neck with anti-EGFR monoclonal antibody(2023 edition)[J]. China Oncology, 2023, 33(1): 81-94. [57] Chen L, Ling Y, Yang H.Comprehensive analysis of the potential prognostic value of 11 glycosylation-related genes in head and neck squamous cell carcinoma and their correlation with PD-L1 expression and immune infiltration[J]. J Oncol, 2022: 2786680. |