[1] Ren C, Hao X, Wang L, et al.Metformin carbon dots for promoting periodontal bone regeneration via activation of ERK/AMPK pathway[J]. Adv Healthc Mater, 2021, 10(12): e2100196. [2] Kassebaum N J, Bernabe E, Dahiya M, et al.Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression[J]. J Dental Res, 2014, 93(11): 1045-1053. [3] Peres MA, Macpherson LMD, Weyant RJ, et al.Oral diseases: a global public health challenge[J]. Lancet, 2019, 394(10194): 249-260. [4] Kordbacheh CK, Finkelstein J, Papapanou PN.Peri-implantitis prevalence, incidence rate, and risk factors: a study of electronic health records at a U.S. dental school[J]. Clin Oral Implants Res, 2019, 30(4): 306-314. [5] 中华口腔医学会口腔颌面修复专业委员会. 下颌骨缺损修复重建治疗专家共识[J]. 中华口腔医学杂志, 2019, 54(7): 433-439. Society of Oral Maxillofacial Rehabilitation,Chinese Stomatological Association. Expert consensus statement on reconstruction principle for mandibular defect[J]. Chinese Journal of Stomatology, 2019, 54(7): 433-439. [6] Schwoebel V, Lambregts-Van Weezenbeek CS, Moro ML, et al. Standardization of antituberculosis drug resistance surveillance in Europe: recommendations of a World Health Organization (WHO) and International Union Against Tuberculosis and Lung Disease (IUATLD) Working Group[J]. Eur Respir J, 2000, 16(2): 364-371. [7] Moraschini V, De Almeida DCF, Calasans-Maia MD, et al.Immunological response of allogeneic bone grafting: a systematic review of prospective studies[J]. J Oral Pathol Med, 2020, 49(5): 395-403. [8] Bousnaki M, Beketova A, Kontonasaki E.A review of in vivo and clinical studies applying scaffolds and cell sheet technology for periodontal ligament regeneration[J]. Biomolecules, 2022, 12(3): 435-473. [9] Laugisch O, Cosgarea R, Nikou G, et al.Histologic evidence of periodontal regeneration in furcation defects: a systematic review[J]. Clin Oral Investig, 2019, 23(7): 2861-2906. [10] He J, Hu X, Cao J, et al.Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration[J]. Carbohydr Polym, 2021, 253: 117198. [11] Byambaa B, Annabi N, Yue K, et al.Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue[J]. Adv Healthc Mater, 2017, 6(16): 1-15. [12] Cha JK, Lee JS, Kim CS.Surgical therapy of peri-implantitis with local minocycline: a 6-month randomized controlled clinical trial[J]. J Dental Res, 2019, 98(3): 288-295. [13] Yoon SW, Kim MJ, Paeng KW, et al.Efficacy of local minocycline agents in treating peri-implantitis: an experimental in vivo study in beagle dogs[J]. Pharmaceutics, 2020, 12(11): 1016-1028. [14] Behzadi S, Luther GA, Harris MB, et al.Nanomedicine for safe healing of bone trauma: opportunities and challenges[J]. Biomaterials, 2017, 146: 168-182. [15] de Avila ED, van Oirschot BA, van den Beucken JJJP. Biomaterial-based possibilities for managing peri-implantitis[J]. J Periodontal Res, 2020, 55(2): 165-173. [16] Sculean A, Nikolidakis D, Nikou G, et al.Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review[J]. Periodontol 2000, 2015, 68(1): 182-216. [17] Liu J, Li R, Yang B.Carbon dots: a new type of carbon-based nanomaterial with wide applications[J]. ACS Cent Sci, 2020, 6(12): 2179-2195. [18] Khajuria DK, Kumar VB, Gigi D, et al.Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19373-19385. [19] Jin N, Jin N, Wang Z, et al.Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2alpha-ATF4 pathway[J]. Biomater Sci, 2020, 8(10): 2840-2852. [20] Shao D, Lu M, Xu D, et al.Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells[J]. Biomater Sci, 2017, 5(9): 1820-1827. [21] An J, Yang H, Zhang Q, et al.Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci, 2016, 147: 46-58. [22] 吴金结, 吴月皓, 陈雪宁, 等. 微振动环境调控小鼠骨髓间充质干细胞的早期力学适应性及成骨分化[J]. 生物医学工程学杂志, 2020, 37(1): 96-104. Wu JJ, Wu YH, Chen XN, et al.Early stage mechanical adaptability and osteogenic differentiation of mouse bone marrow derived mesenchymal stem cell under micro-vibration stimulation environment[J]. Journal of Biomedical Engineering, 2020, 37(1): 96-104. [23] Sijilmassi O.Folic acid deficiency and vision: a review[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(8): 1573-1580. [24] Cai H, Lin L, Wang G, et al.Folic acid rescues corticosteroid-induced vertebral malformations in chick embryos through targeting TGF-beta signaling[J]. J Cell Physiol, 2020, 235(11): 8626-8639. [25] Mohammadi A, Omrani L, Omrani LR, et al.Protective effect of folic acid on cyclosporine-induced bone loss in rats[J]. Transpl Int, 2012, 25(1): 127-133. [26] Yu M, Guo X, Lu H, et al.Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication[J]. Carbon, 2022, 199: 395-406. [27] Yang X, Li P, Tang W, et al.A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity[J]. Carbohydr Polym, 2021, 251: 117040. [28] Shahshahanipour M, Rezaei B, Ensafi AA, et al.An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 826-833. [29] Yang J, Zhang X, Ma YH, et al.Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications[J]. ACS Appl Mater Interfaces, 2016, 8(47): 32170-32181. [30] Wang M, Su Y, Liu Y, et al.Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing[J]. J Colloid Interface Sci, 2022, 608(Pt 1): 973-983. [31] 郑桂婷, 徐燕, 吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731. Zheng GT, Xu Y, Wu MY.Research progress and consensus of experts on the therapy of peri-implant diseases[J]. International Journal of Stomatology, 2020, 47(6): 725-731. [32] Liu J, Wang X, Zheng M, et al.Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway[J]. Life Sci, 2018, 211: 133-139. [33] Ruszczak Z, Friess W.Collagen as a carrier for on-site delivery of antibacterial drugs[J]. Adv Drug Deliv Rev, 2003, 55(12): 1679-1698. [34] Wang S, Deng Z, Ma Y, et al.The role of autophagy and mitophagy in bone metabolic disorders[J]. Int J Biolog Sci, 2020, 16(14): 2675-2691. [35] Ruolan W, Liangjiao C, Longquan S.The mTOR/ULK1 signaling pathway mediates the autophagy-promoting and osteogenic effects of dicalcium silicate nanoparticles[J]. J Nanobiotechnology, 2020, 18(1): 119-137. [36] 曾惠琼, 邹玲华, 尹志华, 等. 自噬机制在骨关节炎中的作用[J]. 中华生物医学工程杂志, 2021,27(4):453-460. Zeng HQ, Zhou LH, Yin ZH, et al.Autophagy in osteoarthritis[J]. Chinese Journal of Biomedical Engineering, 2021,27(4):453-460. [37] Jia L, Hao SL, Yang WX.Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation[J]. Nanomedicine (Lond), 2020, 15(14): 1419-1435. [38] Jiang M, Li Z, Zhu G.The role of autophagy in the pathogenesis of periodontal disease[J]. Oral Dis, 2020, 26(2): 259-269. [39] Ramser A, Greene E, Alrubaye AK, et al.Role of autophagy machinery dysregulation in bacterial chondronecrosis with osteomyelitis[J]. Poultry Sci, 2022, 101(5): 101750. [40] Bullon P, Cordero MD, Quiles JL, et al.Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation[J]. BMC Med, 2012, 10: 122-133. [41] Ni K, Hua Y.Hydrogen sulfide exacerbated periodontal inflammation and induced autophagy in experimental periodontitis[J]. Int Immunopharmacol, 2021, 93: 107399. [42] Nollet M, Santucci-Darmanin S, Breuil V, et al.Autophagy in osteoblasts is involved in mineralization and bone homeostasis[J]. Autophagy, 2014, 10(11): 1965-1977. [43] Li H, Li D, Ma Z, et al.Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss[J]. Autophagy, 2018, 14(10): 1726-1741. [44] Ma Y, Qi M, An Y, et al.Autophagy controls mesenchymal stem cell properties and senescence during bone aging[J]. Aging Cell, 2018, 17(1): e12709. [45] Anozie UC, Dalhaimer P.Molecular links among non-biodegradable nanoparticles, reactive oxygen species, and autophagy[J]. Adv Drug Deliv Rev, 2017, 122: 65-73. |