[1] Cai ZJ,Liu Q.Understanding the Global Cancer Statistics 2018: implications for cancer control[J]. Sci China Life Sci, 2021,64(6): 1017-1020. [2] Marur S, Forastiere AA.Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment[J]. Mayo Clin Proc, 2016, 91(3): 386-396. [3] Syrjönen S.Human papillomavirus (HPV) in head and neck cancer[J]. J Clin Virol, 2005, 32(Suppl 1): S59-S66. [4] Mirghani H, Blanchard P.Treatment de-escalation for HPV-driven oropharyngeal cancer: where do we stand?[J]. Clin Transl Radiat Oncol, 2018, 8: 4-11. [5] Bruixola G, Remacha E, Jiménez-Pastor A, et al.Radiomics and radiogenomics in head and neck squamous cell carcinoma: potential contribution to patient management and challenges[J]. Cancer Treat Rev, 2021, 99: 102263. [6] Whiting PF, Rutjes AWS, Westwood ME, et al.QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intn Med, 2011, 155(8): 529-536. [7] Huang C, Cintra M, Brennan K, et al.Development and validation of radiomic signatures of head and neck squamous cell carcinoma molecular features and subtypes[J]. EBioMedicine, 2019, 45: 70-80. [8] Bagher-Ebadian H, Lu M, Siddiqui F, et al.Application of radiomics for the prediction of HPV status for patients with head and neck cancers[J]. Med Phys, 2020, 47(2): 563-575. [9] Bogowicz M, Riesterer O, Ikenberg K, et al.Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma[J].Int J Radiat Oncol Biol Phys, 2017, 99(4): 921-928. [10] Suh CH, Lee KH, Choi YJ, et al.Oropharyngeal squamous cell carcinoma: radiomic machine-learning classifiers from multiparametric MR images for determination of HPV infection status[J]. Sci Rep, 2020, 10(1): 17525. [11] Lv W, Xu H, Han X, et al.Context-aware saliency guided radiomics: application to prediction of outcome and HPV-status from multi-center PET/CT images of head and neck cancer[J]. Cancers, 2022, 14(7): 1674-1692. [12] Ranjbar S, Ning S, Zwart CM, et al.Computed tomography-based texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinoma[J]. J Comput Assist Tomogr, 2018, 42(2): 299-305. [13] Leijenaar RT, Bogowicz M, Jochems A, et al.Development and validation of a radiomic signature to predict HPV (p16) status from standard CT imaging: a multicenter study[J]. Br J Radiol, 2018, 91(1086): 20170498. [14] Bogowicz M, Jochems A, Deist TM, et al.Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer[J]. Sci Rep, 2020, 10(1): 4542. [15] Yu K, Zhang Y, Yu Y, et al.Radiomic analysis in prediction of Human Papilloma Virus status[J]. Clin Translat Radiat Oncol, 2017, 7: 49-54. [16] Gul M, Bonjoc KJC, Gorlin D, et al.Diagnostic utility of radiomics in thyroid and head and neck cancers[J]. Front Oncol, 2021, 11: 639326. [17] 杨惠茹, 鲁海珍. 头颈部鳞状细胞癌免疫治疗预测指标及分子标志物的研究进展[J]. 中国肿瘤, 2022, 31(5): 387-393. Yang HR, Lu HZ.Advances on predictive indicators for prognosis of head and neck squamous cell carcinoma[J].China Cancer, 2022, 31(5): 387-393. [18] Peng Z, Wang Y, Wang Y, et al.Application of radiomics and machine learning in head and neck cancers[J]. Int J Biolog Sci, 2021, 17(2): 475. [19] Fujita A, Buch K, Li B, et al.Difference between HPV-positive and HPV-negative non-oropharyngeal head and neck cancer: texture analysis features on CT[J]. J Comput Assist Tomogr, 2016, 40(1): 43-47. [20] Payabvash S, Chan A, Jabehdar Maralani P, et al.Quantitative diffusion magnetic resonance imaging for prediction of human papillomavirus status in head and neck squamous-cell carcinoma: a systematic review and meta-analysis[J]. Neuroradiol J, 2019, 32(4): 232-240. [21] 米那瓦尔, 阿达莱提, 买买提吐逊, 等. 口腔鳞癌中HPV16、18型感染和p53蛋白表达的检测研究[J]. 中华口腔医学杂志, 2001,36(6):451-453. Minawaer, Adalaiti, Maimaitituxun, et al. Detection of HPV type 16、18 infection and p53 protein overexpression in oral squamous cell carcinoma[J]. Chinese Journal of Stomatology, 2001, 36(6): 451-453. [22] 林涛,刘爱连.基于医学影像的影像组学及深度学习在肝细胞癌中的研究进展[J].中国医学影像学杂志,2022,30(4):401-405. Lin T, Liu AL.Advances in medical image-based radiomics and deep learning in patients with hepatocellular carcinoma[J]. Chinese Journal of Medical Imaging, 2022, 30(4): 401-405. [23] 周健文,冯峰.食管癌CT影像组学研究进展[J].CT理论与应用研究, 2022, 31(5): 687-696. Zhou JW, Feng F.Advances in CT radiomics of esophageal cancer[J]. CT Theory and Application Research, 2022, 31(5): 687-696. [24] 屠妙倩, 蓝雨晴, 郭潇辰, 等. 良恶性肺结节CT定量及影像组学研究进展[J].现代医药卫生, 2022, 38(9): 1527-1531. Tu MQ, Lan YQ, Guo XC, et al.Advances in CT quantification and radiomics of benign and malignant pulmonary nodules[J]. Modern Medicine and Health, 2022, 38(9): 1527-1531. [25] 罗焱文, 朱庆莉. 乳腺癌影像组学研究进展[J]. 协和医学杂志, 2021, 12(6): 983-988. Luo YW, Zhu QL.Application of radiomics in breast cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 983-988. [26] 李婧, 张红, 束研, 等. 国家中医药数据中心医学影像索引库建设实践[J]. 中国数字医学, 2019, 14(1): 26-28. Li J, Zhang H, Shu Y, et al.Construction practice of the medical picture index library for National Traditional Chinese Medicine Data Center[J]. China Digital Medicine, 2019, 14(1): 26-28. [27] 陈余, 荆慧. 基于深度学习的超声影像组学在乳腺癌中的研究进展[J]. 肿瘤学杂志, 2022, 28(9): 730-735. Chen Y, Jing H.Advances in application of ultrasound-based deep learning radiomics in breast cancer[J]. Journal of Oncology, 2022, 28(9): 730-735. [28] 刘波, 刘菲, 周冠知, 等. 人工智能在胃癌影像学中的应用进展[J].磁共振成像, 2022, 13(6): 155-159. Liu B, Liu F, Zhou GZ, et al.The application progress of artificial intelligence in gastric cancer imaging[J]. Magnetic Resonance Imaging, 2022, 13(6): 155-159. |