[1] Yang Y, Li YX, Yang X, et al.Progress risk assessment of oral premalignant lesions with saliva miRNA analysis[J]. BMC Cancer, 2013, 13: 129. [2] Pindborg JJ, Murti PR, Bhonsle RB, et al.Oral submucous fibrosis as a precancerous condition[J]. Scand J Dent Res, 1984, 92(3): 224-229. [3] Wollina U, Verma SB, Ali FM, et al. Oral submucous fibrosis: an update[J]. Clin Cosmet Investig Dermatol, 2015, 8: 193-204. [4] Saravanan K, Kodanda Ram M, Ganesh R.Molecular biology of oral submucous fibrosis[J]. J Cancer Res Ther, 2013, 9(2): 179-180. [5] Jacob BJ, Straif K, Thomas G, et al.Betel quid without tobacco as a risk factor for oral precancers[J]. Oral Oncol, 2004, 40(7): 697-704. [6] Yoithapprabhunath TR, Maheswaran T, Dineshshankar J, et al.Pathogenesis and therapeutic intervention of oral submucous fibrosis[J]. J Pharm Bioallied Sci, 2013, 5(Suppl 1): S85-88. [7] Liu B, Shen M, Xiong J, et al.Synergistic effects of betel quid chewing, tobacco use (in the form of cigarette smoking), and alcohol consumption on the risk of malignant transformation of oral submucous fibrosis (OSF): a case-control study in Hunan Province, China[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(3): 337-345. [8] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines[J]. IARC Monogr Eval Carcinog Risks Hum, 2004, 85: 1-334. [9] Trivedy C, Meghji S, Warnakulssuriya KA, et al.Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral suhmueous fibrosis[J]. J Oral Pathol Med, 2001, 30(8): 465-470. [10] Tilakaratne WM, Klinikowski MF, Saku T, et al.Oral submucous fibrosis: review on aetiology and pathogenesis[J]. Oral Oncol, 2006, 42(6): 561-568. [11] Shieh TM, Tu HF, Ku TH, et al.Association between lysyl oxidase polymorphisms and oral submucous fibrosis in older male areca chewers[J]. J Oral Pathol Med, 2009, 38(1): 109-113. [12] Ray JG, Ghosh R, Mallick D, et al.Correlation of trace elemental profiles in blood samples of indian patients with leukoplakia and oral submucous fibrosis[J]. Biol Trace Elem Res, 2011, 144(1-3): 295-305. [13] Rajalalitha P, Vali S.Molecular pathogenesis of oral submucous fibrosis-acollagen metabolic disorder[J]. J Oral Pathol Med, 2005, 34(6): 321-328. [14] Shieh DH, Chiang LC, Shieh TY.Augmented mRNA expression of tissue inhibitor of metalloproteinase-1 in buccal mucosal fibroblasts by arecoline and safrole as a possible pathogenesis for oral submucous fibrosis[J]. Oral Oncol, 2003, 39(7):728-735. [15] Shrestha A, Carnelio S.Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity[J]. Kathmandu Univ Med J(KUMJ), 2013, 11(44): 274-281. [16] Yanjia H, Xinchun J.The role of epithelial-mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis[J]. Clin Chim Acta, 2007, 383(1-2): 51-56. [17] Khan I, Kumar N, Pant I, et al.Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis[J]. PLoS One, 2012, 7(12): e51806. [18] Ji WT, Yang SR, Chen JY, et al.Arecoline downregulates levels of p21 and p27 through the reactive oxygen species/mTOR complex 1 pathway and may contribute to oral squamous cell carcinoma[J]. Cancer Sci, 2012, 103(7): 1221-1229. [19] Choudhury Y, Sharan RN.Altered BRCA1 and BRCA2 responses and mutation of BRCA1 gene in mice exposed chronically and transgenerationally to aqueous extract of betel nut (AEBN)[J]. Environ Toxicol Pharmacol, 2011, 31(1): 57-69. [20] Zhou S, Li L, Jian X, et al.The phosphorylation of survivin Thr34 by p34 cdc2 in carcinogenesis of oral submucous fibrosis[J]. Oncol Rep, 2008, 32(3):1085-1091. [21] 周晌辉, 李力力, 翦新春, 等. 口腔黏膜下纤维化癌变过程中G2、M期细胞周期蛋白与存活素磷酸化的研究[J]. 中华口腔医学杂志, 2008, 43(12): 709-712. [22] Zhou S, Qu X, Yu Z, et al.Survivin as a potential early marker in the carcinogenesis of oral submucous fibrosis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 109(4): 575-581. [23] Sharma M, Smitha SS, Radhakrishnan R.Oral submucous fibrosis as an overhealing wound: implications in malignant transformation[J]. Recent Pat Anticancer Drug Discov, 2018, 13(3): 272-291. [24] Choudhari SS, Kulkarni DG, Patankar S, et al.Angiogenesis and fibrogenesis in oral submucous fibrosis: A viewpoint[J]. J Contemp Dent Pract, 2018, 19(2): 242-245. [25] Tilakaratne WM, Iqbal Z, Teh MT, et al.Upregulation of HIF-1 alpha in malignant transformation of oral submucous fibrosis[J]. J Oral Pathol Med, 2008, 37(6): 372-377. [26] Chaudhary M, Bajaj S, Bohra S, et al.The domino effect: Role of hypoxia in malignant transformation of oral submucous fibrosis[J]. J Oral Maxillofac Pathol, 2015, 19(2): 122-127. [27] Tekade SA, Chaudhary MS, Tekade SS, et al. Early stage oral submucous fibrosis is characterized by increased vascularity as opposed to advanced stages[J]. J Clin Diagn Res, 2017, 11(5): ZC92-ZC96. [28] Sheelam S, Reddy SP, Kulkarni RG, et al.Role of cell proliferation and vascularity in malignant transformation of potentially malignant disorders[J]. J Oral Maxillofac Pathol, 2018, 22(2): 281. [29] Kalluri R, Neilson EG Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest, 2003, 112(12): 1776-1784. [30] Lee YH, Yang LC, Hu FW, et al.Elevation of Twist expression by arecoline contributes to the pathogenesis of oral submucous fibrosis[J]. J Formos Med Assoc, 2016, 115(5): 311-317. [31] Chang MC, Lin LD, Wu HL, et al.Areca nut induced buccal mucosa fibroblast contraction and its signaling: a potential role in oral submucous fibrosis-a precancer condition[J]. Carcinogenesis, 2013, 34(5): 1096-1104. [32] Pant I, Kumar N, Khan I, et al.Role of areca nut induced TGF-β and epithelial-mesenchymal interaction in the pathogenesis of oral submucous fibrosis[J]. PLoS One, 2015, 10(6): e0129252. [33] Moutasim KA, Jenei V, Sapienza K, et al.Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis[J]. J Pathol, 2011, 223(3): 366-377. [34] Hinz B.The myofibroblast: paradigm for a mechanically active cell[J]. J Biomech, 2010, 43(1): 146-155. [35] Gheldof A, Hulpiau P, van Roy F, et al. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors[J]. Cell Mol Life Sci, 2012, 69(15): 2527-2541. [36] Chang YC, Tsai CH, Lai YL, et al.Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1[J]. J Cell Mol Med, 2014, 18(4): 698-708. [37] Nieto MA.The snail superfamily of zinc-finger transcription factors[J]. Nat Rev Mol Cell Biol, 2002, 3(3): 155-166. [38] Fang CY, Hsia SM, Hsieh PL, et al.Slug mediates myofibroblastic differentiation to promote fibrogenesis in buccal mucosa[J]. J Cell Physiol, 2019, 234(5): 6721-6730. [39] Yang HW, Lu MY, Chiu YW, et al.Hinokitiol ablates myofibroblast activation in precancerous oral submucous fibrosis by targeting Snail[J]. Environ Toxicol, 2018, 33(4): 454-462. [40] Wollina U, Verma SB, Ali FM, et al.Oral submucous fibrosis: an update[J]. Clin Cosmet Investig Dermatol, 2015, 8: 193-204. [41] Noguti J, DE Moura CF, Hossaka TA, et al.The role of canonical WNT signaling pathway in oral carcinogenesis: A comprehensive review[J]. Anticancer Res, 2012, 32(3): 873-878. [42] Zhou S, Zhu Y, Mashrah M, et al.Expression pattern of DKK3, dickkopf WNT signaling pathway inhibitor 3, in the malignant progression of oral submucous fibrosis[J]. Oncol Rep, 2017, 37(2):979-985. [43] Surana R, Sikka S, Cai W, et al.Secreted frizzled related proteins: implications in cancers[J]. Biochim Biophys Acta, 2014, 1845(1): 53-65. [44] Zhou S, Chen L, Mashrah M, et al.Deregulation of secreted frizzled-related proteins is associated with aberrant β-catenin activation in the carcinogenesis of oral submucous fibrosis[J]. Onco Targets Ther, 2015, 8: 2923-2931. [45] Zheng L, Guan ZJ, Pan WT, et al.Tanshinone suppresses arecoline-induced epithelial-mesenchymal transition in oral submucous fibrosis by epigenetically reactivating the p53 pathway[J]. Oncol Res, 2018, 26(3): 483-494. [46] Nag S, Qin J, Srivenugopal KS, et al.The MDM2-p53 pathway revisited[J]. J Biomed Res, 2013, 27(4): 254-271. [47] Patel PN, Thennavan A, Sen S, et al.Translational approach utilizing COX-2, p53, and MDM2 expressions in malignant transformation of oral submucous fibrosis[J]. J Oral Sci, 2015, 57(3):169-176. [48] Xu C, Zhao J, Loo WT, et al.Correlation of epigenetic change and identification of risk factors for oral submucous fibrosis[J]. Int J Biol Markers, 2012, 27(4): e314-321. [49] Tsuchiya N, Izumiya M, Ogata-Kawata H, et al.Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21[J]. Cancer Res, 2011, 71(13): 4628-4639. [50] Tsai YS, Lin CS, Chiang SL, et al.Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG[J]. Toxicol Sci, 2011, 123(2): 480-490. [51] Chuerduangphui J, Ekalaksananan T, Chaiyarit P, et al.Effects of arecoline on proliferation of oral squamous cell carcinoma cells by dysregulating c-Myc and miR-22, directly targeting oncostatin M[J]. PLoS One, 2018, 13(1): e0192009. [52] Kong LM, Liao CG, Zhang Y, et al.A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis[J]. Cancer Res, 2014, 74(14): 3764-3778. [53] Chattopadhyay E, Singh R, Ray A, et al.Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer[J]. Sci Rep, 2016, 6: 32735. |