[1] 田而慷, 向倩蓉, 赵欣然, 等. 口腔诊疗中人工智能的运用[J].国际口腔医学杂志, 2021, 48(4): 475-484. Tian EK, Xiang QR, Zhao XR, et al.Application of artificial intelligence in oral diagnosis and treatment[J]. International Journal of Stomatology, 2019, 48(4): 475-484. [2] Lo Casto A, Spartivento G, Benfante V, et al.Artificial intelligence for classifying the relationship between impacted third molar and mandibular canal on panoramic radiographs[J]. Life (Basel), 2023, 13(7): 1441-1451. [3] Zhou X, Yu G, Yin Q, et al.Context aware convolutional neural network for children caries diagnosis on dental panoramic radiographs[J]. Comput Math Methods Med, 2022: 6029245. [4] Ngoc VTN, Agwu AC, Son LH, et al.The combination of adaptive convolutional neural network and bag of visual words in automatic diagnosis of third molar complications on dental X-Ray images[J]. Diagnostics(Basel), 2020, 10(4): 209-219. [5] Chen Z, Chen S, Hu F.CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation[J]. Phys Med Biol, 2023, 68(17): 175042. [6] Guo J, Wu Y, Chen L, et al.Automatic detection of cracks in cracked tooth based on binary classification convolutional neural networks[J]. Appl Bionics Biomech, 2022: 9333406. [7] Yin Y, Xu W, Chen L, et al.CoT-UNet++: a medical image segmentation method based on contextual transformer and dense connection[J]. Math Biosci Eng, 2023, 20(5): 8320-8336. [8] Yang P, Guo X, Mu C, et al.Detection of vertical root fractures by cone-beam computed tomography based on deep learning[J]. Dentomaxillofac Radiol, 2023, 52(3): 20220345. [9] Duman SB, Çelik Özen D, Bayrakdar IS, et al.Second mesiobuccal canal segmentation with YOLOv5 architecture using cone beam computed tomography images[J]. Odontology, 2024,112(2): 552-561. [10] Pauwels R, Araki K, Siewerdsen JH, et al.Technical aspects of dental CBCT: state of the art[J]. Dentomaxillofac Radiol, 2015, 44(1): 20140224. [11] García AG, Sampedro FG, Rey JG, et al.Pell-Gregory classification is unreliable as a predictor of difficulty in extracting impacted lower third molars[J]. Br J Oral Maxillofac Surg, 2000, 38(6): 585-587. [12] Rivera-Herrera RS, Esparza-Villalpando V, Bermeo-Escalona JR, et al.Agreement analysis of three mandibular third molar retention classifications[J]. Gac Med Mex, 2020, 156(1): 22-26. [13] 宋娟. 阻生智齿拔除中的阻力分析[J].现代中西医结合杂志, 2008, 17(36): 5679. Song J.Resistance analysis in extraction of impacted wisdom teeth[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2008, 17(36): 5679. [14] 姚恒瑞, 王翰章, 林野, 等.下颌阻生第三磨牙拔除术中阻力分析及其临床应用[J].华西口腔医学杂志, 1988, 6(1): 56-58. Yao HR, Wang HZ, Lin Y, et al.Resistance analysis and clinical application of mandibular impacted third molar extraction[J]. West China Journal of Stomatology, 1988, 6(1): 56-58. [15] Orhan K, Bilgir E, Bayrakdar IS, et al.Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans[J]. J Stomatol Oral Maxillofac Surg, 2021,122(4): 333-337. [16] Vinayahalingam S, Xi T, Bergé S, et al.Automated detection of third molars and mandibular nerve by deep learning[J]. Sci Rep, 2019, 9(1): 9007. [17] Vinayahalingam S, Kempers S, Limon L, et al.Classification of caries in third molars on panoramic radiographs using deep learning[J]. Sci Rep, 2021,11(1): 12609. [18] Yoo JH, Yeom HG, Shin W, et al.Deep learning based prediction of extraction difficulty for mandibular third molars[J]. Sci Rep, 2021,11: 1954. [19] Kwon D, Ahn J, Kim CS, et al.A deep learning model based on concatenation approach to predict the time to extract a mandibular third molar tooth[J]. BMC Oral Health, 2022, 22: 571-578. |