[1] Freedman LS, Oberman B, Sadetzki S.Using time-dependent covariate analysis to elucidate the relation of smoking history to Warthin's tumor risk[J]. Am J Epidemiol, 2009, 170(9): 1178-1185. [2] Espinoza S, Felter A, Malinvaud D, et al.Warthin’s tumor of parotid gland: surgery or follow-up? Diagnostic value of a decisional algorithm with functional MRI[J]. Diagn Interv Imaging, 2016, 97(1): 37-43. [3] 张谦, 杜凤丽, 杜红梅, 等. CT诊断腮腺良恶性肿瘤对头颈外科的应用价值[J]. 中国临床医学影像杂志, 2012, 23(6): 420-422. [4] 郑少燕, 曾向廷, 吴先衡, 等. 腮腺肿瘤的MRI诊断[J]. 中国医学影像技术, 2012, 28(4): 647-651. [5] Haralick RM, Shanmugam K, Dinstein I.Textural features for image classification[J]. IEEE Trans Syst Man Cybern, 1973, 3(6): 610-621. [6] Castellano G, Bonilha L, Li LM, et al.Texture analysis of medical images[J]. Clin Radiol, 2004, 59(12): 1061-1069. [7] House MJ, Bangma SJ, Thomas M, et al.Texture-based classification of liver fibrosis using MRI[J]. J Magn Reson Imaging, 2015, 41(2): 322-328. [8] Virmani J, Kumar V, Kalra N, et al.Neural network ensemble based CAD system for focal liver lesions from b-mode ultrasound[J]. Digit Imaging, 2014, 27(4): 520-537. [9] 于鹏, 田嘉禾. 18F-FDG PET图像纹理分析的研究进展[J]. 中国医学影像学杂志, 2014, 22(9): 711-713. [10] Szczypiński PM, Strzelecki M, Materka A, et al.MaZda—a software package for image texture analysis[J]. Comput Methods Programs Biomed, 2009, 94(1): 66-76. [11] 黄燕琪, 马泽兰, 何兰, 等. 基于CT图像的纹理分析鉴别肝脏实性局灶性病变[J]. 中国医学影像学杂志, 2016, 24(4): 289-292, 297. [12] 朱碧云, 陈卉. 医学图像纹理分析的方法及应用[J]. 中国医学装备, 2013, 10(8): 77-81. [13] Gibbs P, Turnbull LW.Textural analysis of contrast-enhanced MR images of the breast[J]. Magn Reson Med, 2003, 50(1): 92-98. [14] 钟熹, 汤日杰, 李健生, 等. MRI纹理分析鉴别诊断肝硬化背景下小肝癌与增生结节[J]. 中国医学影像技术, 2018, 34(7): 1041-1045. [15] Baltzer PA, Dietzel M, Kaiser WA.Nonmass lesions in magnetic resonance imaging of the breast: additional T2-weighted images improve diagnostic accuracy[J]. J Comput Assist Tomogr, 2011, 35(3): 361-366. [16] Zacharaki EI, Wang S, Chawla S, et al.Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme[J]. Magn Reson Med, 2009, 62(6): 1609-1618. [17] 陈鑫, 魏新华, 杨蕊梦, 等. 常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值[J]. 中华放射学杂志, 2016, 50(3): 186-190. [18] 张竹伟, 华婷, 徐婷婷, 等. 常规MRI纹理分析鉴别乳腺良、恶性病变的价值初探[J]. 中华放射学杂志, 2017, 51(8): 588-591. |