[1] Maerz M, Koelbl O, Dobler B.Influence of metallic dental implants and metal artefacts on dose calculation accuracy[J]. Strahlenther Onkol, 2015, 191(3): 234-241. [2] Maerz M, Mittermair P, Krauss A, et al.Iterative metal artifact reduction improves dose calculation accuracy: Phantom study with dental implants[J]. Strahlenther Onkol, 2016, 192(6): 403-413. [3] Lin MH, Li J, Price RA Jr, et al.The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy[J]. Phys Med Biol, 2013, 58(4): 1027-1040. [4] Zhang X, Xing L.Sequentially reweighted TV minimization for CT metal artifact reduction[J]. Med Phys, 2013, 40(7): 071907. [5] Meyer E, Raupach R, Lell M, et al.Frequency split metal artifact reduction (FSMAR) in computed tomography[J]. Med Phys, 2012, 39(4): 1904-1916. [6] Feldkamp LA, Davis LC, Kress JW.Practical cone-beam algorithm[J]. J Opt Soc Am A, 1984, 1(6):612-619. [7] Dong Y, Shi AJ, Wu JL, et al.Metal artifact reduction using virtual monochromatic images for patients with pedicle screws implants on CT[J]. Eur Spine J, 2016, 25(6): 1754-1763. [8] Yasaka K, Kamiya K. Irie R, et al.Metal artefact reduction for patients with metallic dental fillings in helical neck computed tomography: comparison of adaptive iterative dose reduction 3D (AIDR 3D), forward-projected model-based iterative reconstruction solution (FIRST) and AIDR 3D with single-energy metal artefact reduction (SEMAR)[J]. Dentomaxillofac Radiol, 2016, 45(7): 20160114. [9] Schulze R, Heil U, Groβ D, et al.Artefacts in CBCT: a review[J]. Dentomaxillofac Radiol, 2011, 40(5):265-273. [10] Meyer E, Raupach R, Lell M, et al.Normalized metal artifact reduction (NMAR) in computed tomography[J]. Med Phys, 2010, 37(10): 3251-3255. [11] Gong XY, Meyer E, Yu XJ, et al.Clinical evaluation of the normalized metal artefact reduction algorithm caused by dental fillings in CT[J]. Dentomaxillofac Radiol, 2013, 42(4): 20120105. [12] Meyer E, Raupach R, Lell M, et al.Frequency split metal artifact reduction (FSMAR) in computed tomography[J]. Med Phys, 2012, 39(4):1904-1916. [13] Shikhaliev PM, Fritz SG.Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application[J]. Phys Med Biol, 2011, 56(7): 1905-1930. [14] Xi Y, Chen Y, Tang R, et al.United iterative reconstruction for spectral computed tomography[J]. IEEE Trans Med Imaging, 2015, 34(3): 769-778. [15] Yang Q, Cong W, Xi Y, et al.Spectral X-Ray CT image reconstruction with a combination of energy-integrating and photon-counting detectors[J]. PLoS One, 2016, 11(5): e0155374. [16] Lee YH, Park KK, Song HT, et al.Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software[J]. Eur Radiol, 2012, 22(6): 1331-1340. [17] Kamiya K, Kunimatsu A, Mori H, et al.Preliminary report on virtual monochromatic spectral imaging with fast kVp switching dual energy head CT: comparable image quality to that of 120-kVp CT without increasing the radiation dose[J]. Jpn J Radiol, 2013, 31(4): 293-298. [18] Yu L, Christner JA, Leng S, et al.Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality[J]. Med Phys, 2011, 38(12): 6371-6379. [19] Pessis E, Campagna R, Sverzut J M, et al.Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT[J]. Radiographics, 2013, 33(2): 573-583. [20] Lewis M, Reid K, Toms AP.Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements[J]. Skeletal Radiol, 2013, 42(2): 275-282. [21] Grimmer R, Kachelriess M.Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT[J]. Med Phys, 2011, 38(4): 2233-2240. [22] Kuchenbecker S, Faby S, Sawall S, et al.Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts?[J]. Med Phys, 2015, 42(2): 1023-1036. |