中国口腔颌面外科杂志 ›› 2025, Vol. 23 ›› Issue (5): 442-449.doi: 10.19438/j.cjoms.2025.05.003

• 论著 • 上一篇    下一篇

不同咬合方式下上颌前牙柱状与锥状种植体的应力分布比

郭文迪, 王星   

  1. 新疆医科大学第一附属医院(附属口腔医院) 口腔修复种植科,新疆维吾尔自治区口腔医学研究所,新疆 乌鲁木齐 830054
  • 收稿日期:2025-03-19 修回日期:2025-06-23 出版日期:2025-09-20 发布日期:2025-10-10
  • 通讯作者: 王星,E-mail:40275668@qq.com
  • 作者简介:郭文迪(1999-),女,在读硕士研究生,E-mail:iuwdjiu@163.com

Comparative biomechanical analysis of stress distribution in cylindrical, conical implants for maxillary anterior teeth under different occlusal conditions

Guo Wendi, Wang Xing   

  1. Department of Prosthetics and Implants, The First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University; Stomotology Research Institution of Xinjiang Uygur Autonomous Region. Urumqi 830054, Xinjiang Uygur Autonomous Region, China
  • Received:2025-03-19 Revised:2025-06-23 Online:2025-09-20 Published:2025-10-10

摘要: 目的: 通过三维有限元分析,探讨对刃、正常和深覆3种咬合方式下,柱状与锥状种植体修复上颌中切牙的应力分布差异,为临床方案选择提供生物力学依据。方法: 基于健康受试者CBCT数据构建上颌前牙区三维颌骨模型,在SolidWorks 2024中建立柱状与锥状种植体模型,通过Workbench 2020 R2软件进行有限元分析,模拟3种咬合方式下种植体、牙冠及周围骨组织的应力分布特征。结果: 两种种植体的最大等效应力均集中于基台颈部区域,皮质骨应力集中于牙颈部。柱状种植体在对刃时表现出最高应力值(种植体583.47 MPa,牙冠248.96 MPa,皮质骨697.42 MPa),深覆时牙冠应力显著升高(341.25 MPa);锥状种植体在正常时应力分布最优(种植体313.53 MPa,牙冠90.13 MPa,皮质骨154.47 MPa),但深覆时松质骨应力稳定性优于柱状种植体。整体而言,锥状种植体在正常 时表现出更佳的应力分散能力,而柱状种植体在深覆时冠折风险较高。结论: 种植体形态与咬合方式显著影响应力分布。锥状种植体因其仿生根形设计,在正常咬合时能有效降低颈部骨界面应力,适合美学区修复;柱状种植体结构简单,但深覆患者需谨慎选择并加强咬合调整。临床上应根据咬合类型,个性化设计种植方案,以提高远期预后。

关键词: 上颌前牙种植, 三维有限元分析, 咬合方式, 应力分布, 生物力学性能

Abstract: PURPOSE: Through three-dimensional finite element analysis, this study explores the differences in stress distribution between cylindrical and conical implants used for restoring maxillary central incisors under three occlusion types (edge-to-edge, normal and deep overbite), aiming to provide a biomechanical basis for the selection of clinical treatment plans. METHODS: Three-dimensional maxillary models of the anterior region were constructed using CBCT data from healthy volunteers. Cylindrical and conical implant prototypes were designed in SolidWorks 2024. Finite element analysis (FEA) was performed in ANSYS Workbench 2020 R2 to simulate stress distribution patterns in implants, crowns, and surrounding bone tissues under the three occlusal conditions. RESULTS: Both implant types exhibited peak von Mises stresses concentrated at the abutment neck region, with cortical bone stress localized at the cervical area. Cylindrical implants demonstrated highest stress values under edge-to-edge occlusion (implant: 583.47 MPa, crown: 248.96 MPa, cortical bone: 697.42 MPa). Deep overbite caused significant crown stress elevation (341.25 MPa). Conical implants showed optimal stress distribution under normal occlusion (implant: 313.53 MPa, crown: 90.13 MPa, cortical bone: 154.47 MPa), though their cancellous bone stress stability was superior to cylindrical implants in deep overbite. Overall, conical implants demonstrated better stress distribution capability under normal occlusion, while cylindrical implants exhibited higher crown fracture risk in deep overbite scenarios. CONCLUSIONS: Implant geometry and occlusal type significantly influence biomechanical performance. The conical implant's root-analog design effectively reduces cervical bone interface stress under normal occlusion, making it preferable for aesthetic zone restorations. Cylindrical implants, despite their simpler structure, require cautious selection and occlusal adjustment in deep overbite cases. Clinical protocols should implement individualized implantation strategies based on occlusal classification to optimize long-term prognosis.

Key words: Maxillary anterior implant, Three-dimensional finite element analysis, Occlusal pattern, Stress distribution, Biomechanical performance

中图分类号: