[1] Derby B. Printing and prototyping of tissues and scaffolds [J]. Science, 2012, 338(6109): 921-926. [2] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds [J]. Trends Biotechnol, 2012, 30(10): 546-554. [3] Park JK, Shim JH, Kang KS, et al. Solid free-form fabrication of tissue-engineering scaffolds with a poly(lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein-2/poly(ethylene glycol) complex [J]. Adv Funct Mater, 2011, 21(15): 2906-2912. [4] Murphy SV, Atala A. 3D bioprinting of tissues and organs [J]. Nature Biotechnol, 2014, 32(8): 773-785. [5] Hollister SJ. Porous scaffold design for tissue engineering [J]. Nature Mater, 2005, 4(7): 518-524. [6] Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials [J]. Macromol Biosci, 2006, 6(8): 623-633. [7] Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting[J]. Acta Biomater, 2014, 10(10): 4323-4331. [8] Lee KY, Mooney DJ. Alginate: properties and biomedical applications [J]. Prog Polym Sci, 2012, 37(1): 106-126. [9] Markstedt K, Mantas A, Tournier I, et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J]. Biomacromolecules, 2015, 16(5): 1489-1496. [10] Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering [J]. Acta Biomater, 2014, 10(4): 1646-1662. [11] Billiet T, Gevaert E, De Schryver T, et al. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J]. Biomaterials, 2014, 35(1): 49-62. [12] Dong Z, Wang Q, Du Y. Alginate/gelatin blend films and their properties for drug controlled release[J]. J Memb Sci, 2006, 280(1-2): 37-44. [13] Murakami K, Aoki H, Nakamura S, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings [J]. Biomaterials, 2010, 31(1): 83-90. [14] Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials [J]. Polym Int, 2008, 57(3): 397-430. [15] Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells [J]. Adv Health Mater, 2016, 5(12): 1429-1438. [16] Wang X, Wenk E, Hu X, et al. Silk coatings on PLGA and alginate microspheres for protein delivery [J]. Biomaterials, 2007, 28(28): 4161-4169. [17] Russo L, Zaccaria S, Autiello MA, et al. Hydrogels for biomedical applications[C]//Davim JP. Biomedical Composites: Materials, Manufacturing and Engineering [M]. Berlin: De Gruyter, 2013: 1877-1888. [18] Vlierberghe SV, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review [J]. Biomacromolecules, 2011, 12(5): 1387-1408. [19] Tabriz AG, Hermida MA, Leslie NR, et al. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures [J]. Biofabrication, 2015, 7(4): 045012. [20] Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films [J]. Biomacromolecules, 2007, 8(10): 3193-3197. [21] Du M, Chen B, Meng Q, et al. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers [J]. Biofabrication, 2015, 7(4): 044104. [22] Cohen B, Pinkas O, Foox M, et al. Gelatin-alginate novel tissue adhesives and their formulation-strength effects [J]. Acta biomaterialia, 2013, 9(11): 9004-9011. [23] Gombotz WR,Wee S. Protein release from alginate matrices [J]. Adv Drug Deliv Rev, 1998, 31(3): 267-285. [24] Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication [J]. Adv Mater, 2013, 25(36): 5011-5028. [25] Guillotin B,Guillemot F. Cell patterning technologies for organotypic tissue fabrication [J].Trends Biotechnol, 2011, 29(4): 183-190. [26] Lee H, Ahn S, Chun W, et al. Enhancement of cell viability by fabrication of macroscopic 3D hydrogel scaffolds using an innovative cell-dispensing technique supplemented by preosteoblast-laden micro-beads [J]. Carbohydr Polym, 2014, 104: 191-198. [27] Kong HJ, Lee KY, Mooney DJ. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration [J]. Polymer, 2002, 43(23): 6239-6246. [28] Jung JP, Jones JL, Cronier SA, et al. Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation [J]. Biomaterials, 2008, 29(13): 2143-2151. [29] Su AP, Su HL, Kim WD. Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering [J]. Macromol Res, 2011, 19(7): 694-698. [30] Abreu F, Bianchini C, Forte M, et al. Influence of the composition and preparation method on the morphology and swelling behavior of alginate-chitosan hydrogels [J]. Carbohydr Polym, 2008, 74(2): 283-289. [31] Lee KY, Rowley JA, Eiselt P, et al. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density [J]. Macromolecules, 2000, 33(11): 4291-4294. [32] Wüst S, Godla ME, Müller R, et al. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting[J]. Acta Biomater, 2014, 10(2): 630-640. |