
中国口腔颌面外科杂志 ›› 2026, Vol. 24 ›› Issue (1): 83-88.doi: 10.19438/j.cjoms.2026.01.013
王玥, 包崇云
收稿日期:2025-02-06
修回日期:2025-03-25
发布日期:2026-02-06
通讯作者:
包崇云,E-mail: cybao9933@sina.com
作者简介:王玥(1999-),女,硕士,E-mail: wangyue1224@126.com
基金资助:Wang Yue, Bao Chongyun
Received:2025-02-06
Revised:2025-03-25
Published:2026-02-06
摘要: 由创伤、肿瘤、先天畸形和感染等引起的临界骨缺损仍是临床治疗中的难题。磷酸钙陶瓷(calcium phosphate ceramics,CaPs)不仅促进骨缺损部位的骨形成,还能在异位(如肌肉和皮下组织)诱导新骨生成,有助于解决临界骨缺损修复问题。研究表明,表面微结构是影响CaPs骨诱导性的关键因素。本文综述了微结构特征对骨诱导能力的影响,分析了表面微结构在诱导异位骨形成中的作用机制,为未来CaPs材料的设计与临床应用提供理论指导。
中图分类号:
王玥, 包崇云. 磷酸钙陶瓷表面微结构对骨诱导的调控及机制研究进展[J]. 中国口腔颌面外科杂志, 2026, 24(1): 83-88.
Wang Yue, Bao Chongyun. Progress in the regulation and mechanisms of osteoinduction by the surface microstructure of calcium phosphate ceramics[J]. China J Oral Maxillofac Surg, 2026, 24(1): 83-88.
| [1] Almulhim KS, Syed MR, Alqahtani N, et al.Bioactive inorganic materials for dental applications: a narrative review[J]. Materials (Basel), 2022, 15(19): 6864. [2] Bohner M, Santoni BLG, Döbelin N.β-tricalcium phosphate for bone substitution: synthesis and properties[J]. Acta Biomater, 2020, 113: 23-41. [3] Urist MR.Bone: formation by autoinduction[J]. Science, 1965, 150(3698): 893-899. [4] Kokubo T, Yamaguchi S.Novel bioactive materials developed by simulated body fluid evaluation: surface-modified Ti metal and its alloys[J]. Acta Biomater, 2016, 44: 16-30. [5] Guo X, Li M, Qi W, et al.Serial cellular events in bone formation initiated by calcium phosphate ceramics[J]. Acta Biomater, 2021, 134: 730-743. [6] Galván-Chacón VP, de Melo Pereira D, Vermeulen S, et al. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic[J]. Bioact Mater, 2023, 19: 127-138. [7] Shen JZ, Kosmac T.Advanced ceramics for dentistry[M]. Oxford: Butterworth-Heinemann, 2014: 151-172. [8] Xiao D, Zhang J, Zhang C, et al.The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved[J]. Acta Biomater, 2020, 106: 22-33. [9] Davison NL, Luo X, Schoenmaker T, et al.Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis [10] Duan R, van Dijk LA, Barbieri D, et al. Accelerated bone formation by biphasic calcium phosphate with a novel sub-micron surface topography[J]. Eur Cell Mater, 2019, 37: 60-73. [11] Zhang J, Dalbay MT, Luo X, et al.Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis[J]. Acta Biomater, 2017, 57: 487-497. [12] Iaquinta MR, Torreggiani E, Mazziotta C, et al. [13] Li X, Liu M, Chen F, et al.Design of hydroxyapatite bioceramics with micro-/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells[J]. Nanoscale, 2020, 12(13): 7284-7300. [14] Xu D, Wan Y, Li Z, et al.Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells[J]. Biomater Sci, 2020, 8(12): 3286-3300. [15] Li M, Guo X, Qi W, et al.Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. J Mater Chem B, 2020, 8(9): 1863-1877. [16] Chen X, Wang M, Chen F, et al.Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics[J]. Acta Biomater, 2020, 103: 318-332. [17] Zou M, Sun J, Xiang Z.Induction of M2-type macrophage differentiation for bone defect repair [18] Duan R, Zhang Y, van Dijk L, et al. Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111948. [19] Li M, Guo X, Qi W, et al.Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. J Mater Chem B, 2020, 8(9): 1863-1877. [20] Humbert P, Kampleitner C, De Lima J, et al.Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis[J]. Acta Biomater, 2024, 176: 417-431. [21] Davison NL, Gamblin AL, Layrolle P, et al.Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate[J]. Biomaterials, 2014, 35(19): 5088-5097. [22] Jeong H, Kim D, Montagne K, et al.Differentiation-inducing effect of osteoclast microgrooves for the purpose of three-dimensional design of regenerated bone[J]. Acta Biomater, 2023, 168: 174-184. [23] Akasaka T, Hayashi H, Tamai M, et al.Osteoclast formation from mouse bone marrow cells on micro/nano-scale patterned surfaces[J]. J Oral Biosci, 2022, 64(2): 237-244. [24] Duan R, Barbieri D, Luo X, et al.Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes[J]. Biomater Sci, 2017, 6(1): 136-145. [25] Holland EN, Fernández-Yagüe MA, Zhou DW, et al.FAK, vinculin, and talin control mechanosensitive YAP nuclear localization[J]. Biomaterials, 2024, 308: 122542. [26] Li N, Chen G, Liu J, et al.Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells[J]. ACS Appl Mater Interfaces, 2014, 6(19): 17134-17143. [27] Chen S, He T, Zhong Y, et al.Roles of focal adhesion proteins in skeleton and diseases[J]. Acta Pharm Sin B, 2023, 13(3): 998-1013. [28] Chen Z, Zou Y, Lv Y.Dynamic-stiffening collagen-coated substrate enhances osteogenic differentiation of mesenchymal stem cells through integrin α2β1[J]. Biomater Sci, 2023, 11(13): 4700-4712. [29] Guo Y, Ao Y, Ye C, et al.Nanotopographic micro-nano forces finely tune the conformation of macrophage mechanosensitive membrane protein integrin β2 to manipulate inflammatory responses[J]. Nano Res, 2023: 1-15. [30] Yang Y, Lin Y, Xu R, et al.Micro/nanostructured topography on titanium orchestrates dendritic cell adhesion and activation [31] Hu D, Li T, Bian H, et al.Silk films with distinct surface topography modulate plasma membrane curvature to polarize macrophages[J]. Mater Today Bio, 2024, 28: 101193. [32] Liu H, Wu Q, Liu S, et al.The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction[J]. Biomaterials, 2024, 304: 122406. [33] Bouissou A, Proag A, Bourg N, et al.Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring[J]. ACS Nano, 2017, 11(4): 4028-4040. [34] Miron RJ, Bohner M, Zhang Y, et al.Osteoinduction and osteoimmunology: emerging concepts[J]. Periodontol 2000, 2024, 94(1): 9-26. [35] Gou Y, Qi K, Wei Y, et al.Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair[J]. Nano TransMed, 2024, 3: 100033. [36] Liu X, Hou W, He L, et al.AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation[J]. Colloids Surf B Biointerfaces, 2019, 182: 110332. [37] Tyrina E, Yakubets D, Markina E, et al.Hippo signaling pathway involvement in osteopotential regulation of murine bone marrow cells under simulated microgravity[J]. Cells, 2024, 13(22): 1921. [38] Wei Q, Holle A, Li J, et al.BMP-2 signaling and mechanotransduction synergize to drive osteogenic differentiation [39] Pan JX, Xiong L, Zhao K, et al.YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling[J]. Bone Res, 2018, 6: 18. [40] Dupont S, Morsut L, Aragona M, et al.Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179-183. [41] Mao Y, Wickström SA.Mechanical state transitions in the regulation of tissue form and function[J]. Nat Rev Mol Cell Biol, 2024, 25(8): 654-670. [42] Wang H, Yu H, Huang T, et al.Hippo-YAP/TAZ signaling in osteogenesis and macrophage polarization: therapeutic implications in bone defect repair[J]. Genes Dis, 2023, 10(6): 2528-2539. [43] Li L, Yang S, Xu L, et al.Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin[J]. Acta Biomater, 2019, 96: 674-685. [44] Mei F, Guo Y, Wang Y, et al.Matrix stiffness regulates macrophage polarisation [45] Xiao B.Mechanisms of mechanotransduction and physiological roles of PIEZO channels[J]. Nat Rev Mol Cell Biol, 2024, 25(11): 886-903. [46] Coste B, Mathur J, Schmidt M, et al.Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60. [47] Wang HJ, Wang Y, Mirjavadi SS, et al.Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution[J]. Nat Commun, 2024, 15(1): 5521. [48] Yang X, Lin C, Chen X, et al.Structure deformation and curvature sensing of PIEZO1 in lipid membranes[J]. Nature, 2022, 604(7905): 377-383. [49] Atcha H, Jairaman A, Holt JR, et al.Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J]. Nat Commun, 2021, 12(1): 3256. [50] Yao H, Tang L, Wang D, et al.F-actin microfilaments affect the LIPUS-promoted osteogenic differentiation of BMSCs through TRPM7[J]. Biotechnol J, 2024, 19(8): e2400310. |
| [1] | 刘畑畑, 吴宇飞, 王晓霞, 张瑞斌, 荀泽敏, 张惠. 加速康复外科措施对正颌手术患者术后恢复质量的影响[J]. 中国口腔颌面外科杂志, 2025, 23(6): 578-585. |
| [2] | 骆泉丰. 头颈部微动脉畸形的诊断和治疗:48例临床总结[J]. 中国口腔颌面外科杂志, 2025, 23(6): 608-612. |
| [3] | 蒋美平, 王增香, 吴颖, 李婷, 黄茜. 正颌患者术后恶心、呕吐影响因素的meta分析[J]. 中国口腔颌面外科杂志, 2025, 23(4): 401-405. |
| [4] | 葛雅平, 罗雅楠, 刘向臻, 陈洁玉, 张敏, 佘杨杨. Stafne骨腔2例报告及文献复习[J]. 中国口腔颌面外科杂志, 2025, 23(4): 421-424. |
| [5] | 胡玲玲, 孙英佳, 姜佩玲, 谢志坚. 牙颌面畸形诊治远程医疗模式的建设与思考[J]. 中国口腔颌面外科杂志, 2025, 23(3): 209-214. |
| [6] | 麦迪娜·伊马木, 周昱川, 穆扎帕尔·木合塔尔, 龚忠诚. Piezo1在静脉畸形组织和细胞中的表达及意义[J]. 中国口腔颌面外科杂志, 2025, 23(3): 221-227. |
| [7] | 牛凌霄, 党清清, 韩冰. 颊脂垫的解剖及临床应用进展[J]. 中国口腔颌面外科杂志, 2025, 23(3): 302-306. |
| [8] | 朱慧慧, 辛豪, 李柯燕, 陈欣慰, 任振虎. 超级显微外科血管化游离唇复合组织瓣修复唇癌术后缺损1例报告[J]. 中国口腔颌面外科杂志, 2025, 23(3): 307-309. |
| [9] | 范颢, 董翔. 儿童腭裂修复术中局部使用肾上腺素后急性肺水肿1例报告[J]. 中国口腔颌面外科杂志, 2025, 23(3): 310-312. |
| [10] | 吴嘉晴, 沈爱丽, 钱轶峰, 刘加强. 骨性Ⅱ类错畸形患者双颌手术前后颌骨矢状向移动量与咽气道容积变化分析[J]. 中国口腔颌面外科杂志, 2025, 23(2): 129-136. |
| [11] | 宋鑫利, 胥雷, 李敏, 李大鲁. 骨性Ⅲ类错伴下颌偏斜患者行BSSRO术后近心骨段的三维变化及相关因素分析[J]. 中国口腔颌面外科杂志, 2025, 23(2): 137-144. |
| [12] | 宋明洋, 王丽婵, 王育新, 章茜, 夏成万, 王思齐, 杨旭东. 双颌手术对骨性Ⅲ类错畸形患者颞下颌关节盘-髁关系的影响[J]. 中国口腔颌面外科杂志, 2025, 23(1): 6-12. |
| [13] | 杨一帆, 张一博, 刘雪, 许立明, 孜尔达·阿依丁, 凌彬. 新型数字化腓骨转移固定导板在下颌骨缺损重建术中的应用[J]. 中国口腔颌面外科杂志, 2025, 23(1): 40-47. |
| [14] | 谭惠琳, 曲彬彬, 雷荣昌, 柴安. 髁突高位切除联合正颌手术治疗单侧髁突肥大1例报告[J]. 中国口腔颌面外科杂志, 2025, 23(1): 101-104. |
| [15] | 李晓高, 邓华, 何倩婷. 前臂梭形皮瓣在口腔颌面部中、小型缺损修复中的应用[J]. 中国口腔颌面外科杂志, 2024, 22(5): 473-477. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||