[1] Rajpurkar P, Chen E, Banerjee O, et al.AI in health and medicine[J]. Nat Med, 2022, 28(1): 31-38. [2] Lee M, Hwang EJ, Lee JH, et al.Artificial intelligence for low-dose CT lung cancer screening: comparison of utilization scenarios[J]. Am J Roentgenol, 2025, 225(1):e2532829. [3] Yang Z, Wei T, Liang Y, et al.A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images[J]. Nat Commun, 2025, 16(1): 2366. [4] Wang Z, Liu C, Zhang S, et al.Foundation model for endoscopy video analysis via large-scale self-supervised pre-train[C]//Int Conf Med Image Comput Comput-Assisted Intervention[M]. Cham: Springer Nature Switzerland, 2023:101-111. [5] Li X, Peng L, Wang YP, et al.Open challenges and opportunities in federated foundation models towards biomedical healthcare[J]. BioData Min, 2025, 18(1): 2. [6] Khan W, Leem S, See KB, et al. A comprehensive survey of foundation models in medicine[J]. IEEE Rev Biomed Eng, 2025 May 6. [Epub ahead of print]. [7] Habib G, Qureshi S.Compressed lightweight deep learning models for resource-constrained Internet of things devices in the healthcare sector[J]. Expert Syst, 2025, 42(1): e13269. [8] Goutam B, Hashmi MF, Geem ZW, et al.A comprehensive review of deep learning strategies in retinal disease diagnosis using fundus images[J]. IEEE Access, 2022, 10: 57796-57823. [9] Chen H, Li C, Wang G, et al.GasHis-transformer: a multi-scale visual transformer approach for gastric histopathological image detection[J]. Pattern Recognit, 2022, 130: 108827. [10] Wu R, Liu Y, Ning G, et al. Ultralight VM-UNet: parallel vision mamba significantly reduces parameters for skin lesion segmentation[J/OL]. Patterns, 2025 June 26.[Online now]. https://doi.org/10.1016/j.patter.2025.101298. [11] Qayoom A, Xie J, Ali H.Polyp segmentation in medical imaging: challenges, approaches and future directions[J]. Artif Intell Rev, 2025, 58(6):169. [12] Zhou R, Wang D, Zhang H, et al.Vision techniques for anatomical structures in laparoscopic surgery: a comprehensive review[J]. Front Surg, 2025, 12: 1557153. [13] Saadatnejad S, Oveisi M, Hashemi M.LSTM-based ECG classification for continuous monitoring on personal wearable devices[J]. IEEE J Biomed Health Inform, 2020, 24(2): 515-523. [14] Liu WH, Zhang MX, Zhang YD, et al.Real-time multilead convolutional neural network for myocardial infarction detection[J]. IEEE J Biomed Health Inform, 2018, 22(5): 1434-1444. [15] Cho H, Song I, Jang J, et al.A lightweight deep learning network on a system-on-chip for wearable ultrasound bladder volume measurement systems: preliminary study[J]. Bioengineering(Basel), 2023, 10(5): 525. [16] Lei Y, Chen X, Wang Y, et al.A lightweight knowledge-distillation-based model for the detection and classification of impacted mandibular third molars[J]. Appl Sci, 2023, 13(17): 9970. [17] 曾怡峰, 姚潇, 华飞, 等. 面向全景智齿检测的内卷解耦轻量化网络[J]. 中国图象图形学报, 2023, 28(8):2491-2504. Zeng YF, Yao X, Hua F, et al.A lightweight network—involute and decoupled for panoramic wisdom tooth detection[J]. J Image Graph, 2023, 28(8): 2491-2504. [18] Jin C, Zhang D, Cao X, et al.Lightweight YOLOv8 for tongue teeth marks and fissures detection based on C2f_DCNv3[J]. Sci Rep, 2025, 15(1): 1560. [19] 吴杰, 陶青川. 基于改进BiSeNet 的轻量化上颌前牙分割算法[J]. 现代计算机,2023, 29(24): 33-39. Wu J, Tao QC.A lightweight maxillary anterior segmentation algorithm based on improved BiSeNet[J]. Mod Comput, 2023, 29(24): 33-39. [20] Chotikkakamthorn K, Ritthipravat P, Kusakunniran W, et al. A lightweight deep learning approach to mouth segmentation in color images[J/OL]. Appl Comput Inform, 2022. https://doi.org/10.1108/ACI-08-2022-0225. [21] Tang Y, Wang X, Guo S, et al.An improved lightweight tongue image semantic segmentation model based on DeepLabV3+[J]. Biomed Signal Process Control, 2025, 109: 107911. [22] Lin S, Hao X, Liu Y, et al.Lightweight deep learning methods for panoramic dental X-ray image segmentation[J]. Neural Comput Appl, 2023, 35(11): 8295-8306. [23] Peng J, Li X, Yang D, et al.Automatic tongue crack extraction for real-time diagnosis[C]//Proceedings of 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). New Jersey: IEEE, 2020: 694-699. [24] Khaldi A, Khaldi B, Aiadi O.LCAT-Net: lightweight context-aware deep learning approach for teeth segmentation in panoramic X-rays[J]. Int J Comput Intell Syst, 2024, 17(1): 1-17. [25] Kong Z, Xiong F, Zhang C, et al.Automated maxillofacial segmentation in panoramic dental X-ray images using an efficient encoder-decoder network[J]. IEEE Access, 2020, 8: 207822-207833. [26] Wen X, Liu Z, Chu Y, et al.MRCM-UCTransNet: automatic and accurate 3D tooth segmentation network from cone-beam CT images[J]. Int J Imaging Syst Technol, 2024, 34(4): e23139. [27] Zhang L, Xu F, Li Y, et al.A lightweight convolutional neural network model with receptive field block for C-shaped root canal detection in mandibular second molars[J]. Sci Rep, 2022, 12(1): 17373. [28] Dai Y, Wang Q, Cui S, et al.MediLite3DNet: a lightweight network for segmentation of nasopharyngeal airways[J]. Med Biol Eng Comput, 2025, 63(4): 1081-1099. [29] Chang HC, Yu LW, Liu BY, et al.Classification of the implant-ridge relationship utilizing the MobileNet architecture[J]. J Dent Sci, 2024, 19(1): 411-418. [30] Jin S, Han H, Huang Z, et al.Automatic three-dimensional nasal and pharyngeal airway subregions identification via Vision Transformer[J]. J Dent, 2023, 136: 104595. [31] Li P, Liu Y, Cui Z, et al.Semantic graph attention with explicit anatomical association modeling for tooth segmentation from CBCT images[J]. IEEE Trans Med Imaging, 2022, 41(11): 3116-3127. [32] Liu SJ, Kang CM, Huang FH, et al.Mesh segmentation for individual teeth based on two-stream GCN with self-attention[J]. IEEE Access, 2024, 12: 76735-76743. [33] Xie Z, Hu X, Guo L, et al.A lightweight detection algorithm for tooth cracks in optical images[J]. Comput Biol Med, 2024, 182: 109153. [34] Hua Y, Chen R, Qin HJE.YOLO-DentSeg: a lightweight real-time model for accurate detection and segmentation of oral diseases in panoramic radiographs[J]. Electronics, 2025, 14(4): 805. [35] Fatima A, Shafi I, Afzal H, et al.Deep learning-based multiclass instance segmentation for dental lesion detection[C]//2nd International Electronic Conference on Healthcare. Basel, Switzerland: MDPI, 2023: 347. [36] Vollmer A, Saravi B, Vollmer M, et al.Artificial intelligence-based prediction of oroantral communication after tooth extraction utilizing preoperative panoramic radiography[J]. Diagnostics(Basel), 2022, 12(6): 1406. [37] Ma T, Zhou X, Yang J, et al.Dental lesion segmentation using an improved icnet network with attention[J]. Micromachines(Basel), 2022, 13(11): 1920. [38] Latke V, Narawade VJI, Computing V.Detection of dental periapical lesions using retinex based image enhancement and lightweight deep learning model[J]. Image Vis Comput, 2024, 146:105016. [39] Xu X, Chen J, Yin J. Tooth instance segmentation and disease detection with uncertainty-aware contrastive learning and cross-scale attention[J]. IEEE J Biomed Health Inform, 2025 Jan 2. [Online ahead of print]. [40] Ma T, Qian JL, Qin X, et al.Lightweight dental lesion segmentation algorithm based on transformer and CNN[C]//2024 9th International Conference on Image and Vision Computing (ICIVC). Nanjing: IEEE, 2024: 183-187. [41] Kondori I, Mottin RW, Laskin DM.Accuracy of dentists in the clinical diagnosis of oral lesions[J]. Quintessence Int, 2011, 42(7): 575-577. [42] Jubair F, Al-Karadsheh O, Malamos D, et al.A novel lightweight deep convolutional neural network for early detection of oral cancer[J]. Oral Dis, 2022, 28(4): 1123-1130. [43] Swamikannan LD, Sonawane AB, Patel JS, et al.Oral cancer detection using mobile vision technology[C]//2024 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). Houston: IEEE, 2024: 1-8. [44] Devindi GAI, Dissanayake D, Liyanage SN, et al.Multimodal deep convolutional neural network pipeline for ai-assisted early detection of oral cancer[J]. IEEE Access, 2024, 12: 124375-124390. [45] Song B, Sunny S, Li S, et al.Mobile-based oral cancer classification for point-of-care screening[J]. J Biomed Opt, 2021, 26(6): 065003. [46] Goswami B, Bhuyan MK, Alfarhood S, et al.Classification of oral cancer into pre-cancerous stages from white light images using LightGBM algorithm[J]. IEEE Access, 2024, 12: 31626-31639. [47] Yadav DP, Sharma B, Noonia A, et al.Explainable label guided lightweight network with axial transformer encoder for early detection of oral cancer[J]. Sci Rep, 2025, 15(1): 6391. [48] Dwivedi K, Chugh B, Srivastava A, et al.TransEns-Network: an optimized light-weight transformer and feature fusion based approach of deep learning models for the classification of oral cancer[J]. Int J Comput Modelling Appl, 2024, 1(1): 32-44. [49] Marzouk R, Alabdulkreem E, Dhahbi S, et al.Deep transfer learning driven oral cancer detection and classification model[J]. Comput Mater Continua, 2022, 73(2):3905-3920. [50] Talwar V, Singh P, Mukhia N, et al.AI-assisted screening of oral potentially malignant disorders using smartphone-based photographic images[J]. Cancers(Basel), 2023, 15(16): 4120. [51] Shabir A, ahmed KT, Mujahid M, et al. LWFDTL: lightweight fusion deep transfer learning for oral squamous cell carcinoma diagnosis using histopathological oral mucosa[J]. Multimed Tools Appl, 2025, 84: 30359-30383. [52] Anitha VP, Harini R, Meenatchi R.Pioneering early diagnosis of oral squamous cell carcinoma: utilizing Mobilenetv3, DBN and PSo-BER optimization[C]//2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI).Kathmandu: IEEE, 2025: 557-563. [53] Kalli S, Kalaimani G, Sivaprakash S, et al.Compact deep learning architecture for oral cancer classification[C]//2024 Asian Conference on Intelligent Information and Technology (ACOIT). Beijing: IEEE, 2024: 1-6. [54] Khuntia S, Fan SY, Juan PH, et al.Empowering portable optoelectronics with computer vision for intra-oral cavities detection[J]. IEEE Sensors J, 2024, 24(16): 25911-25919. [55] Fahim M, Sharma V, Duong TQ.A wearable-based preventive model to promote oral health through personalized notification[C]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow: IEEE, 2022: 4282-4285. [56] Hu Z, Radmehr A, Zhang Y, et al.IOteeth: intra-oral teeth sensing system for dental occlusal diseases recognition[J]. Proc ACM Interact Mob Wearable Ubiquitous Technol, 2024, 8(1): 1-29. |