中国口腔颌面外科杂志 ›› 2025, Vol. 23 ›› Issue (2): 117-121.doi: 10.19438/j.cjoms.2025.02.003

• 论著 • 上一篇    下一篇

牙列缺损患者种植体失败的预测模型构建与验证

陶媛, 朱国强, 任卫平, 朱秀红   

  1. 平顶山市第一人民医院 口腔颌面外科,河南 平顶山 467000
  • 收稿日期:2024-06-05 修回日期:2024-08-09 出版日期:2025-03-20 发布日期:2025-04-06
  • 通讯作者: 朱秀红,E-mail: 747164392@qq.com
  • 作者简介:陶媛(1985-),女,硕士,主治医师,E-mail: stonecenter@163.com
  • 基金资助:
    河南省医学科技攻关项目(LHGJ20220365)

Construction and validation of predictive model for implant failure in patients with dentition defect

TAO Yuan, ZHU Guo-qiang, REN Wei-ping, ZHU Xiu-hong   

  1. Department of Oral and Maxillofacial Surgery, First People's Hospital of Pingdingshan City. Pingdingshan 467000, Henan Province, China
  • Received:2024-06-05 Revised:2024-08-09 Online:2025-03-20 Published:2025-04-06

摘要: 目的:构建牙列缺损患者种植体失败的预测模型并验证其效能。方法:选择2020年3月—2023年3月在平顶山市第一人民医院因牙列缺损行种植体修复的195例患者,出院后进行为期1年的随访。依据随访结果分为种植失败组(25例)和种植成功组(170例),采用单因素、多因素回归分析筛选影响种植体修复失败的危险因素。基于危险因素构建牙列缺损患者种植体修复失败风险列线图模型,采用Hosmer-Lemeshow检验、受试者工作特征(receiver operating characteristic,ROC)曲线评估列线图模型预测效能。采用SPSS 26.0软件包对数据进行统计学分析。结果:2组患者年龄≥60岁、合并糖尿病、吸烟史、不良口腔习惯、上颌缺损、龈沟出血指数≥2、牙槽骨密度Ⅲ-Ⅳ级的比例差异有统计学意义(P<0.05),而性别比、高血压、种植时机、种植体直径等无显著差异(P>0.05)。Logistic多因素回归分析结果显示,年龄≥60岁(OR=1.857)、合并糖尿病(OR=1.822)、吸烟史(OR=1.806)、不良口腔习惯(OR=1.714)、上颌缺损(OR=1.885)、龈沟出血指数≥2(OR=1.874)、牙槽骨密度Ⅲ~Ⅳ级(OR=1.869)是牙列缺损患者种植体修复失败的独立危险因素(P<0.05)。基于年龄、糖尿病、吸烟史、不良口腔习惯、上颌缺损、龈沟出血指数、牙槽骨密度构建牙列缺损患者种植体修复失败风险列线图模型,结果显示,C-index指数为0.905(95%CI:0.855~0.972),实测值与预测值基本一致。结论:牙列缺损患者种植体修复失败的因素涉及年龄、糖尿病、吸烟史、不良口腔习惯、上颌缺损、龈沟出血指数、牙槽骨密度,据此构建的列线图模型预测种植体修复失败的效能较好。

关键词: 牙列缺损, 种植体修复, 危险因素, 列线图模型, 种植体失败预测

Abstract: PURPOSE: To construct a prediction model for implant failure in patients with dentition defect and verify its efficacy. METHODS: A total of 195 patients who underwent implant repair due to dental defect in the First People's Hospital of Pingdingshan City from March 2020 to March 2023 were selected and followed up for 1 year after discharge. According to the follow-up results, the patients were divided into implant failure group(n=25) and implant success group(n=170). The risk factors of implant failure in patients with denture defect were screened by univariate and multivariate regression analysis. A nomogram model of implant failure in patients with dental defects was constructed based on risk factors, and the predictive efficiency of the nomogram model was evaluated by Hosmer-Lemeshow test and receiver operating characteristic(ROC) curve. SPSS 26.0 software package was used for statistical analysis. RESULTS: Age≥ 60 years old, complicated with diabetes mellitus, smoking history, bad oral habits, maxillary defect, gingival creval bleeding index≥ 2, the proportion of grade Ⅲ to Ⅳ alveolar bone mineral density in the failed implantation group and the successful implantation group had significant difference (P< 0.05). There was no significant difference in sex ratio, hypertension, implantation time, implant diameter and other clinical data(P> 0.05). Logistic multivariate regression analysis results showed age≥ 60 years old (OR=1.857), diabetes mellitus (OR=1.822), history of smoking (OR=1.806), bad oral habits (OR=1.714), maxillary defect (OR=1.885), gingival crevicular bleeding index ≥ 2 (OR=1.874), alveolar bone mineral density (OR=1.869) were independent risk factors for implant failure in patients with denture defects (P< 0.05). Based on age, diabetes, smoking history, bad oral habits, maxillary defect, gingival crevicular bleeding index, and alveolar bone density, a nomogram model of implant failure risk for patients with dental defect was constructed. The results showed that the C-index was 0.905(95%CI: 0.855-0.972), and the measured value was basically consistent with the predicted value. CONCLUSIONS: The factors of implant failure in patients with dentition defect include age, diabetes, smoking history, bad oral habits, maxillary defect, gingival crevicular bleeding index, and alveolar bone mineral density. The nomogram model constructed based on this analysis has a good predictive effect on implant failure.

Key words: Dentition defect, Implant restoration, Risk factors, Nomogram model, Prediction of implant failure

中图分类号: