[1] Tsai P, Torabinejad M, Rice D, et al.Accuracy of cone-beam computed tomography and periapical radiography in detecting small periapical lesions[J]. J Endodont, 2012, 38(7): 965-970. [2] Araújo ALD, da Silva VM, Kudo MS, et al. Machine learning concepts applied to oral pathology and oral medicine: a convolutional neural networks' approach[J]. J Oral Pathol Med,2023, 52(2): 109-118. [3] Dhiman S, Sharma S, Mehta R.Artificial intelligence in oral medicine and radiology[J]. J Oral Med and Dent Res, 2024, 5(1): 1-6. [4] Murali S, Bagewadi A, Kumar L, et al.Knowledge, attitude, and perception of dentists regarding the role of artificial intelligence and its applications in oral medicine and radiology: a cross sectional study[J]. J Oral Med Oral Surg, 2023, 29(2): 22. [5] Baldi P, Brunak S.Bioinformatics: the machine learning approach[C]//Adaptive computation and machine learning [M]. 2nd Ed. Cambridge: The MIT Press, 2001. [6] Wong J, Murray Horwitz M, Zhou L, et al.Using machine learning to identify health outcomes from electronic health record data[J]. Curr Epidemiol Rep, 2018, 5(4): 331-342. [7] Kotsiantis SB, Zaharakis I, Pintelas P.Supervised machine learning: a review of classification techniques[J]. Informatica, 2007, 31(3): 249-268. [8] Ahuja R, Chug A, Gupta S, et al.Classification and clustering algorithms of machine learning with their applications[J]. Nature-Inspired Computation in Data Mining and Machine Learning, 2020: 225-248. [9] Singh SK, Thakur RK, Kumar S, et al.Deep learning and machine learning based facial emotion detection using CNN[C]//2022 9th international conference on computing for sustainable global development (INDIACom). IEEE, 2022: 530-535. [10] Zhang W, Chien J, Yong J, et al.Network-based machine learning and graph theory algorithms for precision oncology[J]. NPJ Precis Oncol, 2017, 1(1): 25. [11] Rao UM, Fofana I, Rajesh K, et al.Identification and application of machine learning algorithms for transformer dissolved gas analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1828-1835. [12] Casalegno F, Newton T, Daher R, et al.Caries detection with near-infrared transillumination using deep learning[J]. J Dent Res, 2019, 98(11): 1227-1233. [13] 颜文城, 李俊震, 陈玫, 等. 人工智能在牙体牙髓病学领域的应用研究[J]. 医学信息学杂志, 2021, 42(9): 63-67. Yan WC, Li JZ, Chen M, et al.Study on the application of artificial intelligence in the field of dental endodontics[J]. Journal of Medical Informatics, 2021, 42(9): 63-67. [14] Schwendicke F, Elhennawy K, Paris S, et al.Deep learning for caries lesion detection in near-infrared light transillumination images: a pilot study[J]. J Dent, 2020, 92: 103260. [15] Setzer FC, Shi KJ, Zhang Z, et al.Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images[J]. J Endod, 2020, 46(7): 987-993. [16] Orhan K, Bayrakdar IS, Ezhov M, et al.Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans[J]. Int Endodont J, 2020, 53(5): 680-689. [17] Kuwada C, Ariji Y, Fukuda M, et al.Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(4): 464-469. [18] Alsharif MH, El-Sappagh S, Elmogy M, et al.Deep learning in dental image analysis: a review[J]. J Imag, 2021, 7(2): 29. [19] Patel JS, Kumar K, Zai A, et al.Developing automated computer algorithms to track periodontal disease change from longitudinal electronic dental records[J]. Diagnostics(Basel), 2023, 13(6): 1028. [20] 孙俊静, 顾幸生. 基于注意力机制多尺度卷积神经网络的轴承故障诊断[J]. 华东理工大学学报(自然科学版), 2023, 50(2): 247-256. Sun JJ, Gu XS.Bearing fault diagnosis based on multi-scale convolutional neural network of attention mechanism[J]. Journal of East China University of Science and Technology, 2023, 50(2): 247-256. [21] Maia BMS, de Assis MCFR, de Lima LM, et al. Transformers, convolutional neural networks, and few-shot learning for classification of histopathological images of oral cancer[J]. Exp Systems Appl, 2024, 241: 122418. [22] 曾伟梅, 董常峰. 超声人工智能在病毒性肝炎相关并发症中的应用新进展[J]. 新发传染病电子杂志, 2022, 7(4): 95-98. Zeng WM, Dong CF.New progress in the application of ultrasonic AI in viral hepatitis-related complications[J]. Electronic Journal of Emerging Infectious Diseases, 2022, 7(4): 95-98. [23] Adnan N, Umer F, Malik S, et al.Multi-model deep learning approach for segmentation of teeth and periapical pathology on orthopantomograms[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2023, 138(1): 196-204. [24] Rossi L.AI-driven optimization of dental practice operations[C]//Mahadevia S. Orthodontics unveiled: exploring emerging trends in dental alignment[M]. Ahmedabad: Inkbound Publisher, 2021: 32. [25] 聂敏, 徐鸿单, 吴亚菲, 等. 牙周风险评估系统的应用现状[J]. 口腔疾病防治, 2024, 32(3): 235-240. Nie M, Xu HD, Wu YF, et al.Application status of risk assessment models for periodontal disease[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2024, 32(3): 235-240. [26] Mallishery S, Chhatpar P, Banga KS, et al.The precision of case difficulty and referral decisions: an innovative automated approach[J]. Clin Oral Invest, 2020, 24(6): 1909-1915. [27] Arsiwala-Scheppach LT, Chaurasia A, Müller A, et al.Machine learning in dentistry: a scoping review[J]. J Clin Med, 2023, 12(3): 937. [28] Elani HW, Batista AFM, Thomson WM, et al.Predictors of tooth loss: a machine learning approach[J]. PLoS One, 2021, 16(6): e0252873. [29] 邹颖, 夏爽. 深度学习和影像组学在头颈部恶性肿瘤影像学中的研究进展[J].中华放射学杂志, 2020, 54(10): 1021-1024. Zou Y, Xia S.Advance of deep learning and radiomics in head and neck cancer imaging[J]. Chinese Journal of Radiology, 2020, 54(10): 1021-1024. [30] Li C, Wang H, Chen Y, et al.Nomograms of combining MRI multisequences radiomics and clinical factors for differentiating high-grade from low-grade serous ovarian carcinoma[J]. Front Oncol, 2022, 12: 816982. [31] Yuan Y, Ren J, Tao X.Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma[J]. Eur Radiol, 2021, 31(9): 6429-6437. [32] Chen H, Zhang K, Lyu P, et al.A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films[J]. Sci Rep, 2019, 9(1): 3840. [33] Tuzoff DV, Tuzova LN, Bornstein MM, et al.Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4): 20180051. [34] Lee JH, Kim DH, Jeong SN.Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network[J]. Oral Dis, 2020, 26(1): 152-158. [35] Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod, 2019, 45(7): 917-922.e5. [36] Kwak GH, Kwak EJ, Song JM, et al.Automatic mandibular canal detection using a deep convolutional neural network[J]. Sci Rep, 2020, 10(1): 5711. [37] Hiraiwa T, Ariji Y, Fukuda M, et al.A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography[J]. Dentomaxillofac Radiol, 2019, 48(3): 20180218. [38] Almalki YE, Din AI, Ramzan M, et al.Deep learning models for classification of dental diseases using orthopantomography X-ray OPG images[J]. Sensors(Basel), 2022, 22(19): 7370. [39] Imak A, Celebi A, Siddique K, et al.Dental caries detection using score-based multi-input deep convolutional neural network[J]. IEEE Access, 2022, 10: 18320-18329. [40] Jang TJ, Kim KC, Cho HC, et al.A fully automated method for 3D individual tooth identification and segmentation in dental CBCT[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 6562-6568. [41] Im J, Kim JY, Yu HS, et al.Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning[J]. Sci Rep, 2022, 12(1): 9429. |